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Abstract 

Multiple sclerosis (MS) is a chronic inflammatory and neurodegenerative disease which affects the central nervo-
us system. Currently, there are numerous disease-modifying therapies for this condition. Most of them address 
the inflammatory aspects of the disease and are most effective in the relapsing-remitting stages of multiple sc-
lerosis. However, none of them can completely stop the progression of MS and they are usually associated with 
adverse effects. There is an ongoing search for novel approaches that involve different modes of action. Here, we 
discuss examples of new immunomodulating agents such as antigen-specific therapies, neuroprotectants, rege-
nerative strategies and gut microbiota modification. 
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Introduction 

Multiple sclerosis (MS) is a chronic, autoimmune, 
demyelinating inflammatory and neurodegenerative 
disease that involves the central nervous system (CNS). 
It most commonly affects people between 20 and 40 
years of age, predominantly women and it is a major 
cause of neurological disability among young adults. 
Most individuals with MS (85%) experience relapses-

-remissions during which rapid neurological worsening 
is followed by subsequent resolution of the symptoms. 

Unfortunately, after approximately 5-20 years the di-
sease evolves into secondary-progressive phase, whe-
re the acute exacerbations are less frequent but there 
is a gradual neurological worsening overtime. A mino-
rity of patients develop a primary-progressive course 
of MS, with a constant increase in disability from the 
onset with no noticeable relapses [1]. 

MS has a multifactorial and complex pathogenesis 
with genetic and environmental factors involved [2-3]. 
The inflammation in CNS is driven by adaptive and in-
nate immune system components [4]. Moreover, the-
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re is a dysfunction of T-regulatory cells in people with 
MS. It is thought that peripheral failure of tolerance 
facilitates auto-reactive T-cell activation, possibly by 
an infectious agent through a mechanism of molecular 
mimicry. Although MOG, MBP, PLP and other molecu-
les have been suggested, initiating target of the im-
mune attack is still unknown. T-helper cells are shifted 
towards disease-promoting Th1 and Th17 populations 
and B-lymphocytes also take a part in MS pathology [5-
6]. Destruction of myelin reveals new, previously sequ-
estered neuroantigens, which become a target for the 
immune system, perpetuating continuous destruction 
in the CNS [7]. As the disease progresses there is less 
and less inflammatory activity. Patients still accumula-
te disability through gradual axonal loss due to neuro-
degeneration that dominates in the progressive phase 
of MS. Factors such as mitochondrial dysfunction, oxi-
dative stress, intracellular ion imbalance, microglia ac-
tivation may contribute to that process. 

Currently, none of the available disease-modifying 
drugs (DMDs) arrest completely the disease or can be 
considered fully curative. Most of these therapies are 
immunosuppressive and turn down immune respon-
ses without appropriate specificity towards defined di-
sease-associated autoantigens. Thus, novel therapies 
involve selective approaches that promise to affect 
only auto-reactive processes specific to MS [1]. This 
could not only enhance efficacy, but also reduce side 
effects. Many problems still persist in reestablishing 
immunotolerance such as route of administration of 
therapeutic agents, optimal dose and distribution to 
the CNS. Current options in progressive MS are limited 
because available therapies address mainly the inflam-
matory aspect of the disease. They do not concentrate 
on halting neurodegeneration nor do they aim to rege-
nerate neural tissue that is already lost. Thus, there is 
an ongoing search for novel therapies. Here, some of 
the current strategies will be highlighted. 

Antigen specific approaches 

Transderamal Myelin Antigens 

A promising approach is concentrated on induc-
tion of tolerance to specific auto-antigens by applying 
transdermal patches saturated with a mixture of my-
elin peptides: MOG 35-55 (myelin oligodendrocyte 
glycoprotein), MBP 85-99 (myelin basic protein) and 
PLP 139-151 (proteolipid protein) [8]. Patients with re-
lapsing-remitting MS (RRMS) have been observed and 
compared to placebo. The treated individuals, have 
shown slower disability progression, less lesion accu-

mulation and lower relapse rate [9]. Myelin peptides, 
administered at doses of 1mg and 10 mg transder-
mally, have induced a specific population of dendritic 
cells in the skin and local lymph nodes and promoted 
generation of Tr1 regulatory T-cells. As a result, weake-
ned myelin-related immune responses have been ob-
served. Transdermal treatment has caused an increase 
in IL-10 with concomitant decrease in TGF-beta and IF-
N-y secretion. Interestingly, the therapy did not affect 
the percentage of CD4+CD25+FoxP3+T-reg population 
[8]. Administration of transdermal myelin antigens 
proved to be safe with only mild local irritation of the 
skin reported [9]. 

Tolerogenic Dendritic Cells 

Dendritic cells (DCs), not only process, present an-
tigens and activate immune responses, but are also 
implied in tolerance induction. The main subpopula-
tions of these cells are myeloid and plasmocytoid den-
dritic cells. Depending on the surrounding environ-
ment and maturation level they can be divided into 
immunogenic and tolerogenic. Tol-DCs are thought to 
induce tolerance via T-cells promoting their deletion, 
anergy or inducing a regulatory phenotype [10]. This 
knowledge has been translated into studies in animal 
model of MS called experimental autoimmune ence-
phalitis (EAE). In these trials introduction of Tol-DCs 
coupled with myelin oligodendrocyte glycoprotein 
(MOG) has protected from induction or suppressed 
activity of the disease [11-13]. In one study Tol-DCs 
generated from RRMS patients and coupled with PLP 
induced selective hyporesponsiveness in autoreactive 
T-cells in-vitro [14]. Further trials are needed to asses 
feasibility of this approach in-vivo. Selective tuning 
of immune responses offers a lesser risk of adverse 
effects and perhaps greater efficacy. There are rema-
ining questions about the best route of administration 
and selection of suitable myelin antigens in future stu-
dies that would apply tolerogenic dendritic cells [15]. 

Autologous Myelin-Coupled PBMCs 

In ETIMS trial [16], induction of tolerance has been 
achieved through infusion of autologous peripheral 
blood mononuclear cells (PBMCs) coupled with selec-
ted myelin peptides in a group of RRMS and secondary 
progressive MS (SPMS) patients. Similar approach has 
been proven in experimental autoimmune encephali-
tis with amelioration of the disease in terms of occu-
rrence and severity of relapses [17]. In the aforemen-
tioned human study, patients who have shown in-vitro 
responses to one of the seven epitopes of MOG, MBP 
and PLP have been enrolled. PBMCs were collected 
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through leukapheresis and attached chemically to my-
elin peptides. Then, they were mixed with autologous 
plasma and administered intravenously to the patients. 
Participants were divided into two groups, one with 
low and the second- with high disease activity. They 
received escalating doses of the product. Reduction of 
specific T-cell responses to auto-antigens has been re-
ported in the higher dose group. The proposed mode 
of action is thought to be induction of anergy to speci-
fic autoreactive T-cells, apoptosis of coupled cells and 
subsequent phagocytosis by APCs expressing IL-10 and 
PD-L1 [17-19]. Induction of regulatory cells has been 
indicated, but only a slight increase has been measured. 
Importantly, no elevation in Th1 and Th17 populations 
has occurred, with treatment being generally safe. 

DNA and Peptide-based vaccination 

An approach where a modified DNA encoding alte-
red human myelin-basic protein (MBP) altered with less 
immunologically stimulating motifs has been explored as 
a therapeutic vaccine [20-21]. In this case, it was admini-
stered intramuscularly in a cohort of SPMS and RRMS pa-
tients. Reduction of newly forming lesions was observed, 
but with no substantial effect on clinical progression. In 
response to vaccination, less IFN-y secreting T-cells were 
produced and the levels of myelin-specific antibodies in 
the cerebrospinal fluid (CSF) decreased. Treatment was 
generally safe with no serious side effects. In another 
study, rather than DNA, introduction of TCR peptides 
from specific autoreactive T-cell clones has been used 
as a strategy [22-23]. They were administered either by 
intramuscular or intradermal route with addition of ad-
juvants to boost immunogenicity. The vaccine induced 
a subset of T-cells with subsequent reduction of respon-
ses to encephalitogens and secretion of IL-10 by these 
cells. Other proposed mechanism is related to an incre-
ased expression of FoxP3 in natural and inducible popu-
lations of T-regulatory cells [24]. Different approach used 
apitopes or short soluble peptides derived from natural-
ly occurring MBP, which mimic processed epitopes [25-
26]. After intradermal injection, they are bound to MHC-

-class II receptors on immature dendritic cells and are 
thought to induce specific T-regs. Risk profile was low. 
The therapy was safe with local skin reactions observed 
in a group of patients. Another trial [27] used manno-
sylatedlyposomes (CD-206) to facilitate re-uptake of im-
munodominant MBP peptides by dendritic cells which in 
turn should promote tolerance [28]. 

Not all efforts in peptide vaccination proved to be 
safe. Fear of disease exacerbation must be taken into 
account as evidenced by clinical worsening in patients 
who received altered MBP peptide ligand delivered sub-
cutaneously [29]. 

Attenuated Autologous T-cells 

A different cell vaccination technique involved 
the irradiation of myelin-autoreactive T-cells selected 
to be specific towards MBP, collected from the peri-
pheral blood of individuals with RRMS and SPMS [30]. 
After that, autologous cells were reintroduced to the 
patients. A reduction of clinical and radiological acti-
vity of the disease was observed. The probable mode 
of action was an induction of specific cytotoxic T-cells 
against irradiated auto-reactive clones, which results 
in their deletion and selective suppression of auto-
immune responses. Treatment has been safe with no 
general immunosuppression. Other trials with attenu-
ated auto-reactive T-cells have been performed [31-
33] with a wider repertoire of T-cells, auto-reactive not 
only to MBP. As in the first case, there were no serious 
adverse reactions. 

Regenerative therapies 

Prior therapeutic approaches targeted inflammato-
ry processes that ultimately lead to demyelination and 
axonal loss. However, none of the above addressed 
possibilities of reversing the damage inflicted to the 
CNS during the course of MS. One avenue of research 
explores inhibition of molecules that contribute to my-
elin development suppression. LINGO-1 and AMIGO-3 
are proteins which regulate neuroplasticity. LINGO-1 
(Leucine-rich repeat and immunoglobulin-like domain-

-containing Nogo receptor-interacting protein 1) halts 
neurite outgrowth and mediates inhibitory effects on 
oligodendrocyte precursor maturation and therefore 
prevents axonal myelination. Other identified protein, 
AMIGO-3 (amphoterin-induced gene and open reading 
frame-3) exerts similar inhibitory effects as LINGO-1 
[34]. Experimental blockage of LINGO-1 mediated si-
gnaling has shown benefits in animal models of CNS 
demyelination [35-36]. Human clinical studies gave 
mixed results. In the RENEW trial, Opicinumab (Li81 
BIIB033) an anti-LINGO-1 antibody were used to treat 
acute optic neuritis. Some benefits were observed in 
patients assessed with multifocal visual-evoked poten-
tial (MF-VEP) measurement [37-38]. Furthermore, the 
antibody was tested in the SYNERGY study, where its 
safety profile and influence on disability was compared 
to interferon-β therapy in SPMS and RRMS. Primary 
endpoint of the trial was not met. However, modest 
positive results with good risk profile were observed in 
intermediate dose subgroups [39-40]. 

Limited results from above studies could be expla-
ined by other mechanisms compensating for the loss 
of function by LINGO-1, therefore other therapeutic 
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targets are sought [34]. Another discovery are natural 
antibodies (NAbs) directed towards CNS antigens and 
their remyelination-promoting subgroup [41-42]. One 
of them, rHIgM22 or recombinant human monoclonal 
IgM antibody-22, was used in EAE with positive effect 
on lesion load reduction and remyelination. Studies 
have shown that this antibody crosses the blood-brain 
barrier and exerts its effects without immunomodula-
tion. It activates a signaling complex on oligodendro-
cyte precursor cells promoting their survival [43]. Pre-
sently, there are ongoing trials in MS, demonstrating 
its safe risk profile [44-45]. Other candidate for CNS 
repair is rHIgM12, reactive towards gangliosides and 
polisialic acid on neuronal surface, which promotes 
axonal growth [46]. Well known hormone, erythropo-
ietin, induces remyelination and neuronal growth bey-
ond its primary effects [47]. Although clinical benefit in 
small studies has been reported, larger trials have not 
proven efficacy in progressive MS [48-50]. 

Another approach is associated with multiple sc-
lerosis-associated retrovirus (MSRV), which is a latent, 
endogenous virus, integrated into the genome. It can 
be reactivated in the course of EBV infection and the 
envelope protein (MSRV-env) has been found in CNS 
lesions of MS patients. As a Toll-like receptor-4 an ago-
nist, MSRV-env has been shown to have proinflamma-
tory properties, preventing remyelination by inhibition 
of oligodendrocyte maturation [51]. GNbAC1 is a mo-
noclonal antibody engineered to bind the envelope 
protein which indirectly suppresses neuroinflamma-
tion and favors myelin deposition. CHANGE-MS trial in 
RRMS [52] supports GNbAC1 effects on remyelination 
[53-55]. Small molecules could also have similar capa-
bilities. Domperidone, a dopamine receptor antago-
nist, is being tested in SPMS patients as prolactin rele-
ased secondary to dopamine blockade, could improve 
remyelination [56-58]. 

Novel monoclonal antibodies 
targeting the immune system 

Immune cell targeting monoclonal antibodies 

Rituximab is not officially approved for the treat-
ment of MS, but this anti-CD20 chimeric monoclonal 
antibody is used off-label and has shown efficacy in re-
mitting-relapsing forms of the disease. It reduces the 
annual relapse rate (ARR) and risk of enlarging T2 MRI 
lesions in comparison to placebo as shown in HERMES 
trial. Its mechanism of action is similar to ocrelizumab 
and it is thought to be depletion of circulating B-cells 
and CD20-bearing T-cells. 

Ocrelizumab has been approved in 2017 for the 
treatment of MS. This anti-CD20 monoclonal antibody 
is a breakthrough, because it is the first type of treat-
ment that has been proven to show benefit in indivi-
duals with the primary progressive form of MS. 

The success of monoclonal antibodies such as ocre-
lizumab and rituximab has led to further search for 
drugs with similar pharmacodynamics. Ofatumumab, 
an anti-CD20 humanized antibody, has been used in 
the treatment of chronic lymphocytic leukemia and 
rheumatoid arthritis [59-60]. As compared to rituxi-
mab, it binds to a different epitope resulting in a more 
pronounced complement-dependent cytotoxicity due 
to slower dissociation from the targeted antigen. As 
a result, profound B-cell depletion is noted. In phase 
II trial, ofatumumab has been administered intrave-
nously to RRMS patients, with no increased risk of se-
vere infections [61]. Ofatumumab has shown efficacy 
in reducing MRI markers of disease activity. Another 
placebo-controlled trial in RRMS patients explored 
a subcutaneous route of administration with good to-
lerance and comparable neuroimaging results [62]. 

Inebilizumab (MEDI-551) is a monoclonal antibo-
dy targeting CD19 receptor. It causes a rapid B-cell 
depletion similarly to the therapies directed against 
CD20(+) cells and immunologically translates to com-
parable effects. RRMS patients in phase I study, had 
slower lesion accumulation and acceptable risk [63]. 
BAFF or B-cell activating factor is a protein found both 
on B-lymphocyte membranes and in an unbound form. 
Its main function is a promotion of B-cell activation 
and survival. Located mainly on mature B-cells, BAFF 
is a target for tabalumab. Tested in patients with SLE 
and rheumatoid arthritis, it has shown effects on bio-
logical markers but with no clinical benefit. Acknow-
ledging the role of B-cell mediated pathology in MS, 
tabalumab has been investigated as an option for pa-
tients with RRMS in a trial focused on safety and radio-
logical activity markers, although with no reduction in 
new gadolinium-enhancing lesion formation [64]. 

Cytokine targeting monoclonal antibodies 

The role of IL-17 and IL-12 has been implied in the 
pathophysiology of MS. T-lymphocytes that under-
go differentiation to a Th17-phenotype are linked to 
neuroinflammation as their concentration correlates 
with disease severity in EAE. IL-17 activates microglia, 
macrophages and astrocytes, which secrete cytokines 
such as IL-6, TNF-a, IL-1 which in turn increase blood-

-brain barrier permeability and recruit more immune 
cells into the CNS. Enhanced myelin destruction and 
axonal loss occurs as a result [65]. IL-12 secreted by 
APCs in the CNS activates macrophages, B-cells, Th1 
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cells and promotes inflammation. As in the periphe-
ry, this cytokine together with IL-23 differentiate naive 
T-cells into a Th17-subtype. 

Ustekinumab is a monoclonal antibody targeted 
against the p40 subunit of IL-23 and IL-12 cytokines 
[66]. Studies using the EAE model have shown reduc-
tion in disease severity, however its efficacy has not 
been supported in human trials [67-69]. This discre-
pancy could be explained by low fraction of antibodies 
crossing the BBB, non-dependence from IL-23 signa-
ling and disease compartmentalization to the CNS in 
the later stages of MS [70]. 

Secunikumab, a monoclonal antibody specific to 
IL-17A, aims to block the effects of this cytokine. Se-
lective targeting of this interleukin is more beneficial 
than suppression of Th17 cells, because IL-17 can be 
secreted independently by δγT cells, astrocytes and 
oligodendrocytes in the CNS. There is the evidence 
that it could reduce radiological activity in patients 
with RRMS [71]. Risk of adverse effects has been ac-
ceptable with higher incidence of infections. 

Tocilizumab approved for the treatment of re-
sistant rheumatoid arthritis, is an antibody directed 
against IL-6, which promotes differentiation of naive 
T-cells towards Th17 subtype [72]. Blockage of this si-
gnaling has prevented the development of EAE. Unfor-
tunately, tocilizumab has been associated with cases 
of new-onset MS in patients receiving the antibody 
for other indications, which raises concerns about its 
safety profile [73]. 

Aside from its proliferative properties, GM-CSF 
activates and recruits myeloid cells to the CNS during 
neuroinflammation and promotes their maturation 
[74]. MOR103 is a monoclonal antibody that interferes 
with GM-CSF on coupling to its receptor. As subsets of 
B-cells produce GM-CSF and contribute to MS patho-
logy [75], MOR103 has become a potential treatment 
option in MS and recent trials have shown good tole-
rance of this drug [76]. 

Neuroprotectants 

Ion-channel blockers 

Experimental evidence has shown that the accu-
mulation of sodium ions may lead to an increased in-
tracellular calcium concentration. This activates signa-
ling that can cause cell death. This mechanism can be 
referred to the neuronal loss seen in MS patients [77-
78]. Ion channel blockade can reduce influx of sodium 
and thus lead to neuroprotection. Many antiepileptic 
drugs act as sodium-channel blockers and are being 

explored as a treatment in MS. Lamotrigine has been 
investigated in trials as a neuroprotectant with mixed 
results [79]. One study has not shown efficacy in redu-
cing serum neurofilament concentrations in patients 
receiving lamotrigine, although subgroup analysis has 
suggested some benefit [80]. Phenytoin administe-
red in acute optic neuritis has had a positive effect on 
retinal nerve fiber thickness measured using OCT [81]. 
Another trial using the EAE model supports the effi-
cacy of oxcarbamazepine [82]. It has been studied in 
SPMS patients in order to explore its neuroprotective 
properties (NCT02104661). Riluzole, a tetradotoxin-

-gated sodium channel blocker, is being tested in hope 
that it could prevent neurodegeneration in MS [83-84]. 
Further developments are ongoing as other agents 
share similar mode of action [85]. Amiloride, an acid-

-sensing sodium ion channel blocker, has been explo-
red as a treatment in SPMS [83]. However, results in 
optic neuritis have been unsatisfactory [86]. 

Inhibitors of microglia activation 

Microglial cells as a part of the innate immune 
system are thought to participate in destructive pro-
cesses in the course of MS. Fluoxetine, aside from 
its antidepressant activity, also acts as a blocker of 
microglial-mediated inflammation. Furthermore, it 
has other beneficial effects such as up-regulating the 
expression of BDNF [87-88]. 

Laquinimod, which has undergone phase III trials, 
has not shown slower disability progression in lower 
doses (CONCERTO trial) in RRMS patients. Moreover, 
higher doses have been linked to unacceptable risk of 
cardiovascular events. Clinical studies in PPMS gave 
unsatisfactory results [89-90]. Pretreatment as well as 
administration in developed EAE caused reduced de-
myelination. Spinal cords and optic nerves of treated 
mice were infiltrated by phagocytes to a lesser extent 
in laquinimod treated groups. Human immune cells 
treated in-vitro also displayed decreased activation, 
thus suggesting the role of this mechanism in neuro-
degeneration [91-93]. 

Minocycline, an oral antibiotic from the tetracyc-
line family, beyond antimicrobial activity, also exerts 
anti-inflammatory effects. It inhibits NMDA-mediated 
microglia activation in-vitro and it also promotes alter-
nate anti-inflammatory differentiation of these cells in 
animal models of post-stroke neuroinflammation [94-
95]. These effects could also be explored in MS and 
one study has shown a reduced risk of transformation 
from CIS to MS [96]. 

Ibudilast, an phosphodiesterase inhibitor, is a small 
molecule that crosses the blood-brain barrier. It acts 
as a neuroprotectant by inhibiting microglia activation 
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and antagonism of macrophage-migration inhibitory 
factor. Furthermore, it also induces neurotrophin se-
cretion [97-98]. In phase II trial ibudilast has exhibited 
efficacy in slowing down brain atrophy in patients with 
progressive MS [99]. 

Antioxidants and agents improving 
mitochondrial function 

Disruption of energy production and dysfunction 
of mitochondria has been already implied as a contri-
buting factor for neurodegeneration which takes place 
in MS. Increased demand for ATP in demyelinated axo-
ns with insufficient production of ATP by mitochondria 
can lead to intracellular sodium accumulation and se-
condary influx of calcium ions that promotes cell death 
[100-102]. Biotin is essential for energy homeostasis 
as it functions as a co-factor for essential enzymes ca-
talysing carboxylation. These are involved in lipid syn-
thesis, amino acid metabolism and Krebs cycle. Admi-
nistration of high oral doses has slowed and, in some 
cases, reversed disability progression in patients with 
progressive MS. Beneficial effect on visual acuity has 
been reported in MS patients with progressive optic 
neuropathy. It probably promotes remyelination and 
mitochondrial energy production [103-105]. Biotin-de-
pendent acetyl-CoA carboxylase catalyses the synthe-
sis of malonyl-CoA, a substrate for production of fatty 
acids and thus, promotes myelin deposition. Further-
more, it may provide substrates for the Krebs cycle and 
raise levels of intracellular ATP. 

Idebenone, an ubiquinone analogue, also func-
tions as an electron carrier in oxidative phosphoryla-
tion. Trials with this agent gave positive but disputable 
results in Leber's hereditary optic neuropathy [106] 
and Friedreich's ataxia, genetic diseases where mito-
chondrial dysfunction has been reported [107-108]. 
The antioxidant has been explored as a neuroprotec-
tant in EAE, although recent studies have yielded un-
favorable results. Nevertheless, idebenone has been 
investigated as a treatment for MS [109]. 

Another free radical scavenger, MitoQ consists of 
triphentylphophonium lipophilic cation attached to an 
alkyl chain linked with ubiquinone that enables it to 
be efficiently up-taken by mitochondria. It exerts its 
antioxidative effects by aiding mitochondrial function 
[110]. Administration has been protective against neu-
roinflammation and axonal degeneration in mice with 
induced EAE. 

Alpha-lipoic acid, a natural molecule, has also potent 
antioxidative effects [111]. This endogenous molecule 
exerts neuroprotection via regeneration of glutathione 
pool, neutralization of free radicals and aids oxidative 
phosphorylation as a co-factor of pyruvate dehydroge-

nase. Interestingly, it also inhibits leukocyte migration 
to the CNS. Alpha-lipoic acid has reduced MMP-9 and 
sI-CAM concentrations with positive effects on blood-

-brain barrier integrity and reduction of brain atrophy 
in a small cohort of SPMS patients [112-113]. 

Neuroprotective agents with other 
modes of action 

Simvastatin, the statin noted for its protective ef-
fects on vasculature, has pleiotropic effects aside from 
suppression of cholesterol synthesis. It is also known 
for its immunomodulatory effects [114]. It has been 
investigated in SPMS as a disease-modifying drug in 
MS-STAT study. Improvement on the quality of life and 
cognition in patients receiving high-dose simvastatin 
has been reported and the rate of brain atrophy has 
been reduced [115-116]. These neuroprotective ef-
fects could be explained by a combination of positi-
ve effects on cerebral blood flow and anti-oxidative 
properties [117-118]. Further trials are needed to as-
sess feasibility of simvastatin in MS. 

Siponimod, closely related to fingolimod, is another 
immunomodulatory agent. It has a similar mode of ac-
tion as it affects recirculation of lymphocytes from the 
lymph nodes. It improves over fingolimod as it is more 
selective towards S1P and S5P receptors. It has been 
shown to slow disability progression. Siponimod ad-
ministration resulted in a reduction of brain atrophy 
in individuals with SPMS suggesting neuroprotective 
effects exerted by modulation of S1P and S5P recep-
tors that may mediate brain cell survival. Adverse re-
actions are similar to fingolimod [119-120]. 

The role of glycogen synthase kinase-3 (GSK-3) 
is suggested in immune response regulation [121]. 
Lithium, a treatment for bi-polar disorder, suppresses 
the function of the enzyme and has caused preven-
tion of EAE onset and disease amelioration [122]. 
A trial in progressive MS has been performed to study 
effects on brain atrophy and evaluate lithium's neu-
roprotective effects [123]. 

Gut microbiome modification 

A complex community of microorganisms that in-
habit the gastrointestinal tract is often referred to as 
the gut microbiome. Its influence on the nervous sys-
tem has been more highlighted recently as it exerts its 
effects through immunological, endocrine and direct 
neural mechanisms [124]. The metabolites produced 
by intestinal bacteria such as short-chain fatty acids 
(SCFAs), sustain blood-brain barrier integrity, induce 
T-reg populations and regulate function of microglia in 
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the CNS. Polisaccharide-A, a metabolite of Bacteroides 
fragilis, has been reported as an immunomodulatory 
factor. Furthermore, stress-mediated hypothalamic-pi-
tuitary axis activation can lead to changes in intestinal 
barrier permeability and dysbiosis through actions of 
glucocorticosteroids and catecholamines. Involvement 
of neural pathways between the digestive tract and 
the CNS is important. Bacteria in the gut may interact 
with afferent neural fibers by producing neurotransmi-
ters and directly stimulate them with their molecular 
patterns. In addition, stimulation of efferent signaling 
nerves can regulate immune cell activity [125]. The 
role of this gut-brain axis has been implied in patho-
physiology of psychiatric and neurological disorders 
such as MS [126]. 

Immunomodulatory effects caused by microbio-
me modification either by antibiotic treatment or pro-
biotics can be supported by evidence from animal mo-
dels [127-129]. In one study, the incidence of EAE was 
higher in genetically prone mice with gut microbiome 
transplanted from MS affected subjects [130]. The-
re are also hints that people with MS have a distinct 
composition of gut flora [131]. Moreover, besides blo-
od-brain barrier, the intestinal barrier is also disrup-
ted in many patients with MS and it may contribute to 
pathology of the disease. Gut flora can affect bile acid 
composition and vice-versa. Thus, strategies to modi-
fy the gut microbiome have been formulated. Trials 
in EAE in which probiotics were used have shown ef-
ficacy [132]. There is a possibility that such microbio-
logical interventions could be translated to patients 

with MS as there are results from human studies that 
support such approaches. For example, there are on-
going trials with fecal microbial transplantation (FMT) 
[133-135]. Therapeutical infestation with helminths 
has been also explored, because parasites are been 
known to skew immune response towards Th2 sub-
type, thus in effect ameliorating neuroinflammation 
[136-138]. 

Conclusions 

Currently there is a variety of treatments available 
for patients with multiple sclerosis and this number 
is rising. They can be divided into symptomatic drugs 
(used in the setting of a relapse, e.g. glucocorticoids 
and IVIG) and disease-modifying drugs (DMD) that 
aim to influence long-term progression of the disease. 
None of aforementioned therapies are fully curative 
and most of them affect relapsing-remitting forms of 
the disease. Search for more specific therapies is ongo-
ing that either try to reestablish self-tolerance, concen-
trate on regeneration and neuroprotection or modula-
te innate immune responses that are prominent in later 
stages of the disease and therefore promise a safer and 
hopefully more effective treatment in the future. 
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