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Abstract 

Flow cytometry (FC) represents a pivotal technique in the domain of biomedical research, facilitating the analysis 
of the physical and biochemical properties of cells. The advent of artificial intelligence (AI) algorithms has marked 
a significant turning point in the processing and interpretation of cytometric data, facilitating more precise and 
efficient analysis. The application of key AI algorithms, including clustering techniques (unsupervised learning), 
classification (supervised learning) and advanced deep learning methods, is becoming increasingly prevalent. 
Similarly, multivariate analysis and dimension reduction are also commonly attempted. The integration of advan-
ced AI algorithms with FC methods contributes to a better understanding and interpretation of biological data, 
opening up new opportunities in research and clinical diagnostics. However, challenges remain in optimising the 
algorithms for the specificity of the cytometric data and ensuring their interpretability and reliability.
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Introduction

Flow cytometry (FC) is a  technique that enables rapid 
analysis of large numbers of cells in suspension by measuring 
the light scattered by the cells and fluorescence emitted by 
fluorochromes conjugated to antibodies [1-2]. The two main 
detectors are the forward scatter channel (FSC) which detects 
scattering along the laser beam, determining the size of par-
ticle and the side scatter channel (SSC) which measures scat-
tering at 90°, thus assessing the granularity of the cells [3-4]. 
Other detectors measure the fluorescence produced by exci-
tation of the fluorochrome with laser beam of the appropriate 
wavelength [3, 5].

FC is used in research and clinical laboratories for the 
assessment of cell surface antigen and intracellular antigen 
expression, enzyme activity gene expression and mRNA tran-
scription [6]. This method permits the assessment of the cell 
cycle, mitochondria and cellular processes (e.g. apoptosis, au-
tophagy, and cell ageing). It allows the quantification of bio-
logical substances in various body fluids, including serum and 
cerebrospinal fluid. FC allows not only the collection and anal-
ysis of data about cells, but also the sorting of cells based on 
the principle of deflecting flowing particles according to their 
electrical potential [6]. The degree of purity obtained is great-
er than 99%. This method is also employed to isolate rare cell 
populations, including cancer cells, fetal erythrocytes, and ge-
netically modified cells [6-7]. The FC technique can be adapt-
ed for the detection, characterisation and enumeration of 

microorganisms in aqueous matrices, as well as somatic and 
bacterial cells in milk [8]. In medicine, FC is most widely used 
in haematology and oncology, specifically in cancer diagnosis, 
classification and monitoring treatment [7].

Despite the technological developments in FC, data analy-
sis remains a key problem, requiring both standardisation and 
automation [9]. The aim of this article is to present the po-
tential of AI algorithms in the analysis of cytometric data and 
the problems that still need to be solved to fully automate the 
process of analyzing this type of data.

Manual analysis of cytometric measure-
ments

Manual gating still is the primary method for analysing 
the results. This step is essential for obtaining relevant in-
formation about the cells under study, whether the goal is 
to study the phenotype of a population or to identify the in-
ternal structures of cells [10]. In the case of the analysis of 
peripheral blood cells, such as lymphocytes, an FSC vs. SSC 
plot is initially constructed, which facilitates the distinction of 
the primary cell populations based on their size and granular-
ity. Once the groups of cells of interest have been selected by 
setting up further gating, the expression of surface markers in 
fluorescence plots can be analysed. The manual gating pro-
cess is complicated, time-consuming, subjectiveand requires 
advanced knowledge and experience [11-13].

Figure 1. Schematic of manual analysis of cytometric data using peripheral blood mononuclear cells (PBMC) sample as an example
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Material and methods

The article is based on a review of the literature available 
in PubMed (biomedical research publications) and IEEE Xplore 
(broad access to technical literature in engineering and com-
puter science). The analysis included articles on the applica-
tion of machine learning algorithms to cytometric data analy-
sis, including methods for mining and interpreting FC data. All 
included publications were selected for their relevance to the 
development of ML tools in this field. 

Application of AI in cytometric data anal-
ysis

The use of artificial intelligence (AI) algorithms to auto-
mate the analysis of cytometric measurement data is becom-
ing more common. This approach aims to reduce processing 
time and improve error resilience compared to manual meth-
ods. These algorithms mainly rely on clustering techniques, 
which involve dividing data based on specific criteria [14]. 
Clustering includes both classification (data is assigned to pre-
defined classes) and clustering (natural groups in data without 
prior labels). Dimensionality reduction methods (e.g. princi-

pal component analysis, t-distributed stochastic neighbour 
embedding and uniform manifold approximation and projec-
tion) are also increasingly used.

Clustering techniques – unsupervised 
machine learning

Unsupervised learning, unlike supervised learning, oper-
ates on unlabeled data, identifying patterns and structures 
without pre-assigned categories.

k-means

The first clustering algorithm used for analyzing cytomet-
ric data was k-means [15-16]. This iterative algorithm identi-
fies data points with similar features around a central point 
called the ‘centroid’. Points closest to the centroid are grouped 
together, forming clusters. Distance is crucial in this algorithm 
and can be defined in various ways, but it is often the small-
est sum of distances between the centroids and observa- 
tions [17]. K-means involves several steps: selecting the num-
ber of clusters, initializing centroid positions, assigning each 
data point to the nearest centroid based on distance, recalcu-

Figure 2. Artifical Intelligence (AI) algorithms currently applicable to the analysis of cytometric measurements in analysis

Figure 3. Visualisation of the operation of k-means clustering algorithm
A – before the application of k-means; B – effect of the algorithm
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lating centroids, and repeating these steps until the centroids’ 
positions stabilize or a stopping condition is met [15, 17].

K-means is a  straightforward and effective clustering 
method, but it faces challenges like computational scalability, 
which can limit its use in analyzing cytometric data [18]. This 
algorithm requires substantial computation, with processing 
time increasing with the number of data points, clusters, and 
iterations, making it inefficient for large datasets like those 
from FC. Scalability can be improved by modifying the method 
to initialize centroids more efficiently or by using random data 
samples to update the centroids faster. Additionally, parallel 
computing is explored to further enhance scalability [19-20].

Another disadvantage of k-means is the need for the user 
to predefine the number of clusters [18]. Cytometric data are 
often characterised by a  complex structure, which makes it 
difficult to determine the number of clusters, and choosing 
the wrong number of clusters can affect the biological inter-
pretation of the results due to both under- and overestima-
tion of their actual number [21]. When using the k-means 
algorithm, it is important to remember that it assumes the 
sphericity of the clusters and their separation [18]. These 
assumptions can be a disadvantage in the case of cytomet-
ric data obtained from peripheral blood cell measurements 
such as peripheral blood mononuclear cells (PBMC). This is 
because the cluster structure of these data is usually complex. 
PBMCs include different types of cell populations character-
ised by irregular distributions in the multidimensional feature 
space which may be caused, for example, by the fluorescence 
intensity of different surface markers [22]. At the same time, 
some cell populations have features that may lead to over-
lapping clusters causing the assumption of separation to fail.

A number of methods used in attempts to automate cy-
tometric analysis have conceptual similarities to k-means or 
directly apply this algorithm. These methods include Flow-
Clust, FlowMerge and FlowMeans [23-25]. Methods based on 
the k-means algorithm are often benchmarked and improved. 
The FlowMerge and flowClust algorithms were found useful in 
identifying cell populations in real clinical data from patients 
with chronic lymphocytic leukemia [23]. It was also pointed 
out that there were some difficulties in identifying clusters 
compared to other methods when evaluating their work with 
synthetic data [24].

Gaussian Mixture Model (GMM)

GMM is a probabilistic model that assumes data are gen-
erated from specific probability distributions [36]. It models 
data as a mixture of Gaussian components, each represent-
ing a cluster, estimating parameters like mean, variance and 
cluster weights to determine the likelihood of data points be-
longing to each cluster [37]. This makes GMM suitable for bio-
medical data analysis, including FC [38]. GMM is effective for 

clustering multimodal data with unknown cluster numbers, 
performing well with both continuous and discrete data, par-
ticularly when multiple peaks are present [39-40]. Cytometric 
data, such as PBMC phenotypes, often exhibit multimodality, 
making GMM ideal for identifying distinct cell populations, 
regardless of subtle differences [41-43]. The algorithm excels 
with continuous data and the Dirichlet Process Gaussian Mix-
ture Model, an extension of GMM, handles unknown clus-
ter numbers, automatically detecting clusters based on data 
structure [44-45].

HDBSCAN

Hierarchical Density-Based Spatial Clustering of Applica-
tions with Noise (HDBSCAN) is a density-based clustering al-
gorithm [26-27] that groups closely located points and identi-
fies outliers as noise. Unlike k-means, the HDBSCAN does not 
require a  predetermined number of clusters, which makes 
it useful for analysing cytometric data when the number of 
subpopulations is unknown [27]. HDBSCAN adapts to differ-
ent densities, identifies clusters of different shapes, but re-
quires the definition of a minimum number of points to form 
a  cluster and a  distance measure [27]. This algorithm uses 
a hierarchical approach to clustering, assessing data member-
ship based on their position in the cluster tree structure [28]. 
Points form a cluster if they are sufficiently densely packed, 
while points that do not meet the density criteria, i.e. without 
a sufficient number of neighbours within a certain radius, are 
treated as noise and remain unassigned [29-30]. 

HDBSCAN starts by calculating the distance of each point 
to its nearest neighbour, estimating the local density. Based 
on these distances, it creates a graph in which the points are 
vertices and the edges have weights corresponding to the dis-
tances of each other. This graph is used to create a minimum 
spanning tree, from which the edges with the lowest weights 
are iteratively removed, splitting the clusters [31]. Small clus-
ters are labelled as noise and larger clusters are given new 
labels. Finally, the algorithm identifies the most stable clusters 
as the final result [30, 32]. Despite its efficiency, the HDBSCAN 
algorithm has a high computational complexity [28-30], mak-
ing it slower than k-means [30].

Automated analysis of cytometric data in oncology is 
crucial for faster and more objective patient monitoring. 
The combination of uniform manifold approximation and 
projection (UMAP) and HDBSCAN simultaneously reduces 
data dimensionality and identifies clusters in AML samples, 
effectively detecting blasts and improving monitoring of 
minimal residual disease. This approach is superior to tradi-
tional supervised methods, particularly with limited data and 
high variability of leukemic cells [33]. It was also suggested 
that the HDBSCAN algorithm is useful for the analysis of mi-
tochondrial features by FC [34]. HDBSCAN is used to identify 
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cell populations for cytometric analysis in some commercial 
programmes, although specific implementations vary de-
pending on the specifics of the tool and analytical require- 
ments [25, 35].

Classification techniques – supervised 
machine learning

Random forests 

Random forest is one of the algorithms of supervised 
machine learning. The algorithm was developed by Breiman 
et al. [46]. It may be useful to conceptualise the structure of 
the proposed algorithm in terms of the organisation of a nat-
ural forest. A random forest is composed of individual trees, 
with each tree functioning as a classifier. These trees operate 
simultaneously to produce a collective classification output. 
This outcome is determined by a process of “voting” between 

the trees, with the result being the classification assigned to 
the input data.

The random forest algorithm is based on decision trees, 
which represent sets of decisions to solve problems. Decision 
trees consist of branches and nodes [47]. Key node types in-
clude: root (initial division), internal (specific choices), and 
leaf (final observations). Branches represent decision paths.

There are several learning algorithms for decision trees, 
including: Id3, C4.5, CART, CHAID [48]. Decision trees are not 
complex structures, their implementation is relatively straight-
forward and does not require the appropriate scaling of fea-
tures. They demonstrate high precision and accuracy in classi-
fication tasks, which is worth considering in analysis of FC data. 
On the other hand, they are not suitable for working on small 
datasets which can be a  limitation in FC data analysis [49].  
Presentation of the structure and functioning of decision 
trees is important in the context of the random forest algo-
rithm because as mentioned earlier, random forests consist of 
multiple decision trees. The basic mechanism responsible for 

Figure 4. The HDBSCAN clustering algorithm
A – scatter plot showing data points distributed across different feature space regions; B – darker colours indicate higher point concen-
tration, suggesting potential clusters; lighter shades indicate lower density, possibly noise; C – graph where points are connected by 
edges weighted by their distances; D – HDBSCAN-identified clusters, with dense region points forming clusters and others labelled as 
noise (grey)
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the generation of random forests is bagging (bootstrap aggre-
gation), a method introduced by Breiman et al. [50]. It gener-
ates multiple predictor versions and later aggregates them. In 
random forests, bagging creates independent decision trees, 
each trained on unique bootstrap samples (random data 
samples with repetitions) [50]. The classification outcome is 
determined through a process known as majority voting. The 
technique of majority voting is a  method of combining the 
predictions of results from multiple classifiers. Each decision 
tree “votes” for a class, and the class with the most votes be-
comes the final prediction [51-52]. This algorithm can be used 
as a classifier in cytometric data analysis.

Random forest, is an easy-to-implement machine learning 
algorithm, excels at detecting meaningful data patterns [53]. 
It can reveal subtle features often overlooked by traditional 
statistical methods. Those features are often crucial in the 
context of a medical diagnosis [54]. In one study, a random 
forest model was implemented to identify significant details 
within the acquired cytometric data, with the objective of 
increasing the accuracy of diagnosis. Researchers collected 
blood samples from 230 individuals, including those with 
myelodysplastic syndromes (MDS) and healthy controls. They 
then used FC to evaluate the cellular composition of these 
samples. A random forest model was utilized to analyse the 
collected cytometric data, facilitating the more accurate de-
tection and classification of significant cellular patterns asso-
ciated with MDS [54]. The ability of random forests to identify 
subtle relationships in complex, multi-parameter data has en-
abled researchers to diagnose the presence of myelodysplas-

tic syndromes with greater accuracy. The model achieved 92% 
classification accuracy, a high and satisfactory result. The ran-
dom forest algorithm is relatively resistant to overfitting, a sit-
uation in which the machine learning model provides good re-
sults based on the data on which it was trained, but is instead 
ineffective in analysing new, previously unseen data [55].  
FC data can include many features (markers) for each cell, and 
the number of cells analysed is very large [56]. In such com-
plex datasets, it is easy to have random patterns that can be 
misleading and lead to over-fitting, particularly when using 
simpler models such as single decision trees. Random forests 
are easy to interpret [53]. This is a major advantage in the con-
text of cytometric data analysis. It helps to understand which 
features contribute to the classification of different cell popu-
lations. This makes it possible to identify biologically relevant 
markers [57], which is essential in the context of medical di-
agnostics and biomedical research. The model, which is sim-
ple to interpret, also makes it easier to verify results, which 
increases the reliability and precision of analyses.

While the random forest algorithm offers a  number of 
advantages, it is not free from limitations that may affect its 
effective application in FC data analysis. A significant limita-
tion of machine learning models is their high computational 
cost [58]. Cytometric data is frequently large and complex 
and multidimensional. As a result, training models based on 
this type of data can be costly and challenging from an eco-
nomic perspective. Although random forests are resistant to 
over-fitting, in some cases they can be prone to this problem, 
especially when working with data containing a lot of noise. 

Figure 5. Visualization of a decision tree from Random Forests algorithm
The step-by-step classification process is shown through a series of decision nodes (yellow, green) and final classification outcomes at 
the leaf nodes (blue). The paths illustrate how data is split based on feature thresholds to reach the final decision.
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In the context of FC, we can interpret noisy data as data with 
measurement errors or issues caused by sample heterogene-
ity or biological variability [59-60], all of which can affect the 
generation and propagation of errors in the classification per-
formed by the model.

Support Vector Machines (SVM)

SVM was first introduced by Cortes and Vapnik et al. in 1995 
[61]. The model was intended to be an effective alternative 
to the neural networks, which were still in development and 
presented certain technical challenges. SVM involves complex 
mathematical concepts including hyperplanes, margins, sup-
port vectors, kernels, and optimization. A hyperplane is a lin-
ear decision function that allows separation of data classes 
from each other. The prefix “hyper” indicates that this plane 
refers to multiple dimensions. For n dimensions, a hyperplane 
will take on (n–1) dimensions [61]. The margin is the distance 
between the hyperplane and the nearest data point [48].  
Support vectors are data points that are located on a hyper-
plane. Optimization is the process of finding a hyperplane with 
as much margin as possible to best separate data points [62].  
A kernel is a mathematical function that enables the transfor-
mation of data from a lower-dimensional space into a high-
er-dimensional space, allowing for the separation of the data 
[62]. In the context of FC data, an illustrative example would 
be the separation of cells in a PBMC graph with FSC and SSC 
parameters. In the two-dimensional space of the graph, it is 
not possible to linearly separate these cells. However, the ker-
nel can be used to move the data points to a  three-dimen-
sional space, where it is possible to linearly separate them. 
The addition of an extra dimension allows for the creation of 
a hyperplane that can better represent the dataset.

SVM are particularly effective in classification tasks that 
require the detailed separation of data. One illustrative exam-
ple is the use of a SVM as a classification tool for identifying 
circulating tumour cells (CTCs) in the bloodstream. In one 
study, blood samples were collected from 41 healthy individ-
uals and 41 patients with colorectal cancer, and CTCs were 
counted on the basis of the results obtained from FC. An SVM 
classifier based on the number of CTCs was developed and 
achieved an 82.3% accuracy [63]. It has been demonstrated 
that the application of this cytometric data in the context of 
SVM learning can facilitate the effective differentiation be-
tween healthy and cancerous blood samples. The high per-
formance of this model suggests its potential future use as 
a  non-invasive cancer screening tool. SVM models are also 
suitable for identifying the presence of rare cells in peripheral 
blood. In one study, an SVM model was developed to identify 
rare cell types in FC data and it demonstrated an accuracy of 
69%, compared to traditional manual classification. This tool 
could be used in the future for more precise analysis of FC 
data, particularly in the identification of rare cell types, which 
may be important in both disease diagnosis and therapy mon-
itoring [64].

Despite their benefits, SVMs have limitations, particularly 
with data imbalance. FC datasets often contain underrepre-
sented cell types, leading SVMs to create hyperplanes biased 
towards majority types, which may not be optimal for less 
abundant cell types [65]. Cytometric data are typically multi-
dimensional and complex, necessitating careful kernel selec-
tion and parameter tuning to optimize model performance. 
This process, though time-consuming, is crucial to prevent 
over- or under-fitting [66-69]. Additionally, SVMs’ computa-
tional complexity in high-dimensional spaces can be a draw-
back, particularly in large cytometric datasets where rapid 
analysis is required [61, 70]. 

Figure 6. Visualisation of the implementation of Random Forests 
A – before the application of Random Forests; B – effect of algorithm, classification into three groups
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Deep learning

Although not new, deep learning has rapidly advanced 
due to increased computing power [71]. It is widely applied in 
medical fields, including immunology [72]. In simplified terms, 
neural networks learn through a two-stage process. First, the 
network receives a substantial amount of data, which it then 
uses to attempt to predict an outcome. Afterwards, it veri-
fies the difference between the predicted outcome and the 
assumed outcome. This is an iterative process, in which the 
accuracy of the predictions is increased through the adjust-
ment of weights. Each iteration results in a greater accuracy 
in the resulting predictions [73]. The actual learning process 
of neural networks is inherently complex, relying on several 
mathematical and statistical principles, which require deep 
understanding of linear algebra, calculus, probability and 
mathematical optimization. However it is possible to explain 
this process in much more simple terms by using one of the 
simplest models: a single-layer neural network. 

To illustrate this, we can take the example of a manually 
curated FC dataset distinguishing healthy and cancerous cells. 
A single-layer neural network with an input layer and an out-
put layer connected by randomly initialized weights is used. 
FC data, representing cell features, are entered, weighted, 
summed and passed through an activation function to cap-
ture patterns. The network predicts the cell’s type, and the 
error between the prediction and the true class is calculated. 
Using backpropagation, weights are adjusted iteratively to 
minimize the error [74-76].

In FC, deep learning enhances diagnostic efficiency by 
reducing analysis time and improving feature extraction [54]. 
Recent advancements have broadened its applications, even 
in challenging areas [77]. For example, a deep learning model 
effectively detected rare tumor cell clusters in breast cancer 
biopsies, though it showed lower sensitivity, indicating the 
need for larger datasets [78]. Deep learning models have 
achieved high efficiency in acute myeloid leukemia (AML) 
diagnosis, distinguishing AML from acute lymphoblastic leu-
kemia with near-perfect accuracy [79]. Neural networks have 
proven effective in analysing multi-parameter flow cytometry 
data, aiding in leukemic classification [80-81]. Automation of 
pattern detection through neural networks significantly im-
proves the precise classification of leukemic subtypes. 

Deep learning in FC relies heavily on large training data-
sets, which may be challenging to obtain in smaller cytomet-
ric studies [78, 82]. Training complex neural networks also 
demands advanced hardware [71]. An additional drawback is 
the so-called “black box problem” which refers to the diffi-
culty in explaining how a neural network makes specific deci-
sions and generates the final outcome of its predictions [83]. 
In the context of cytometric data analysis, it is often unclear 
which specific cellular characteristics influenced the model to 

make certain diagnostic decisions. Simpler machine learning 
algorithms might sometimes offer more efficient solutions in 
this context.

Dimensionality reduction

Dimensionality reduction is an important group of ma-
chine learning methods, particularly in data analysis with 
many variables. It is the process of simplifying a dataset by 
reducing the number of variables, while retaining as much 
relevant information as possible [84]. This is the biggest ad-
vantage of the method, as a large number of variables often 
leads to problems with model over-fitting, often referred to as 
the ‘curse of dimensionality’ [85-86]. The second advantage 
is data compression and faster calculations [86]. The most 
commonly used methods for dimensionality reduction are 
principal component analysis (PCA), independent component 
analysis (ICA), t-Distributed Stochastic Neighbour Embedding 
(t-SNE) and the previously mentioned UMAP [87-89]. For cy-
tometric data, t-SNE algorithm is often used in commercial 
software.

t-SNE is a non-linear, unsupervised technique mainly used 
for the exploration and visualisation of multivariate data [90]. 
It is a stochastic method, ordering ‘neighbours’ while preserv-
ing local data structures and using the Student’s t-distribution 
to model distances in low-dimensional space [91]. The algo-
rithm allows separation of data that cannot be separated by 
a straight line, which is important for cytometric data. 

It is a  valuable tool in cell biology and immunological 
research, e.g. to profile cells of the immune system to un-
derstand their diversity, function and role in the immune re-
sponse. The t-SNE algorithm has enabled the identification of 
subpopulations of normal and leukemic lyphocytec and the 
evaluation of their expression of immunosuppressive mark-
ers, clearly separating them from normal haematopoietic cells 
[92-93]. Combining t-SNE with unsupervised learning algo-
rithms enables analysis of cytometric data to detect residual 
disease with high sensitivity [94]. The algorithm also support-
ed the analysis of PBMC multicolour FC data, identifying rare 
subgroups of vaccine-induced T and B-cells [95].

Dimensionality reduction using t-SNE is effective in visual-
ising immune cells and quantifying their frequencies, showing 
high agreement with conventional manual gating. However, it 
may not fully separate specific subsets of immune cells, lead-
ing to some discrepancies in the identification and quantifica-
tion of these subpopulations, which is why the need to modify 
the algorithm in the analysis of cytometric data is highlighted, 
as standard parameter settings may lead to inaccurate or mis-
leading cell maps [96-97]. The disadvantages of t-SNE are the 
high computational cost, difficult interpretation and need to 
set parameters that require tuning and experimentation.

[AHEAD OF PUB]



00 Eur J Transl Clin Med 2025;8(1):00-00

Conclusions

Machine learning algorithms enable automated and pre-
cise data analysis, reducing errors due to subjectivity. How-
ever, we also face challenges. A key challenge is standardisa-
tion to ensure reproducibility and reliability. It is essential in 
laboratory diagnostics and biomedical sciences, as it enables 
comparison of results between laboratories and supports the 
introduction of modern techniques in routine diagnostics and 
clinical research. Without standardisation, it is difficult for 
these methods to be accepted in clinical practice. Other chal-
lenges include high computational costs, due to the fact that 
cytometric analyses involve multidimensional data of large 
size, requiring adequate memory resources and computing 
power. These costs can be reduced by optimising the perfor-

mance of algorithms and using cloud-based solutions. As the 
computational complexity of the algorithms plays a key role 
here, a more practical selection of algorithms for specific cy-
tometry applications also seems necessary.
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