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Abstract 

Atrial tachycardia (AT) is a prevalent cardiac arrhythmia characterized by rapid, abnormal electrical activity ori-
ginating from the atria. It represents a significant clinical challenge due to its potential for recurrence, adverse 
cardiovascular outcomes and impact on quality of life. Catheter ablation has emerged as a primary therapeutic 
modality for AT, offering the potential for rhythm control and symptom alleviation. Despite advancements in 
techniques and technology, the success of AT ablation can vary widely among patients. Identifying prognostic 
factors associated with successful AT ablation and potential outcome improving techniques is imperative for 
optimizing patient care.
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Introduction

Atrial tachycardia poses a considerable clinical challenge 
due to its propensity for recurrence and adverse cardiovascu-
lar outcomes. Focal AT represents up to 17% of supraventricu-
lar arrhythmias referred for catheter ablation treatment [1]. 

This treatment modality has revolutionized the management 
of AT, providing a cure for many patients. However, the effi-
cacy of AT ablation is influenced by numerous factors, rang-
ing from patient demographics to procedural intricacies and 
post-ablation monitoring strategies [2-9]. 
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Advancements in predictive modeling and risk stratifica-
tion algorithms enable clinicians to assess the likelihood of 
procedural success and arrhythmia recurrence more accu-
rately [7, 10-14]. Incorporating clinical, electrocardiographic, 
imaging and genetic data into comprehensive risk assessment 
tools allows for personalized treatment recommendations 
and informed decision-making [3]. Furthermore, longitudinal 
data collection through large-scale registries and multicenter 
studies facilitates ongoing refinement of prognostic models 
and validation of novel biomarkers.

The identification of novel outcome predictors for suc-
cessful ablation of AT is an active area of research aimed at 
improving procedural efficacy and patient outcomes. While 
traditional predictors (e.g. demographic factors, concomitant 
diseases) remain important [4], recent advancements have 
led to the exploration of additional techniques and candidate 
selection strategies that may enhance risk stratification and 
treatment planning (Figure 1). 

Precision medicine approaches

The concept of precision medicine, which emphasizes 
individualized treatment based on patients’ unique charac-
teristics, is gaining traction in the field of AT ablation [10]. 
Tailoring treatment strategies to patients’ genetic profiles, 
atrial substrate characteristics and comorbidities enables 
more effective targeting of arrhythmogenic mechanisms and 
optimization of procedural outcomes. Integrating approaches 
such as genetic testing, biomarker analysis, advanced imag-
ing modalities, multi-omics (i.e. the analysis of multiple data 
sets regarding for example genomics, metabolomics etc.) and 
personalized ablation strategies, into clinical practice holds 

promise for further improving patient care and long-term 
outcomes.

Multivariable risk scores incorporate demographic fac-
tors, comorbidities, electrocardiographic parameters, imaging 
findings and genetic biomarkers to stratify patients into low, 
intermediate, and high-risk categories [11-12, 15-17]. Per-
sonalized risk assessment facilitates shared decision-making, 
treatment planning, and optimization of post-ablation man-
agement strategies tailored to each patient’s unique profile.

Patient characteristics

Patient-related variables play a crucial role in determining 
the success of AT ablation. Although age and the presence of 
comorbidities (e.g. coronary artery disease, cardiomyopathy, 
valvular heart disease) is not clearly correlated with higher 
arrhythmia recurrence rates in the population of patients 
with supraventricular tachycardias (SVT), their presence can 
correlate with a decreased success rate and increased occur-
rence of complications and major adverse cardiac events [4]. 
This may be attributed to age-related changes in atrial tissue 
characteristics and its electrical properties [18-19], however 
the lack of symptom improvement can be also attributed to 
the natural course of the primary concomitant cardiovascular 
diseases. Additionally, the presence of comorbidities (e.g. hy-
pertension, diabetes, obesity) can have impact on procedural 
efficacy and long-term arrhythmia recurrence [5, 20].

Novel patient characteristics, including genetic variants, 
inflammatory profiles, autonomic modulation, comorbidity 
burdens and metabolic phenotypes, can play critical roles in 
determining the success of AT ablation [4, 6, 20-22]. Under-
standing the interplay between patient demographics, co-
morbidities and genetic factors is essential for personalized 
risk stratification and treatment planning in AT ablation [4-6, 

Figure 1. Atrial tachycardia classification according to the 2019 ESC Guidelines 
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23-24]. Incorporating those into risk stratification algorithms 
and personalized treatment approaches can optimize proce-
dural outcomes, minimize complication risks, and improve 
long-term arrhythmia-free survival in patients with AT [5-6, 
10, 23, 25]. 

Genetic variants and biomarkers

Advancements in genetic profiling and biomarker discov-
ery have identified specific genetic variants associated with 
general susceptibility to SVT, arrhythmia mechanisms, and 
treatment response, most importantly for atrial fibrillation 
(AF) [6]. Genetic polymorphisms in ion channel genes, cardiac 
structural proteins and regulatory molecules may influence 
atrial electrophysiology and arrhythmogenic substrate (i.e. 
the cardiac tissue, where the arrhythmia originates from) re-
modeling [6]. 

Although the mechanisms for AT development have been 
studied most thoroughly in patients with specific genetic dis-
orders (e.g. RAS/MAPK pathway) [26], it has also been inves-
tigated in animal models, such as the tafazzin mutation [27]. 
Moreover, it has been shown, that certain genetic mutations 
can be related to an increased risk of isolated atrial cardiomy-
opathy and atrial arrhythmias [28-30]. Genome-wide associa-
tion studies (GWAS) and candidate gene analyses can identify 
polymorphisms in genes encoding ion channels (e.g. potassi-
um channels), cardiac structural proteins, such as gap junction 
proteins, and regulatory molecules that modulate atrial elec-
trophysiology and arrhythmogenesis [26-30].

Inflammatory and immune profiles

Growing evidence suggests that systemic inflammation 
and immune activation play a crucial role in the pathogenesis 
and recurrence of atrial arrhythmias. Elevated levels of pro- 
-inflammatory cytokines, chemokine and circulating immune 
cells correlate with atrial remodeling, fibrosis and electrical 
instability [21, 25]. In the past years, it has been shown that 
genetic polymorphisms in the structure of proteins such as 
interleukin-6 are related to an increased risk of postoperative 
atrial fibrillation [21]. It is noteworthy that in some studies 
this correlation has not been confirmed for AT [25]. The ex-
istence of an inflammatory-mediated AT pathway may create 
a possibility for the implementation of immunomodulatory 
therapies targeting inflammatory pathways in order to atten-
uate atrial fibrosis, reduce arrhythmia burden and improve 
ablation outcomes [31].

Markers of atrial fibrosis, inflammation and extracellular 
matrix remodeling, which are consistent with atrial myopathy, 
have emerged as potential predictors of ablation success and 
long-term outcomes, documented mostly in atrial fibrillation. 
Serum biomarkers such as galectin-3, soluble ST2 and matrix 

metalloproteinases (MMPs) reflect underlying atrial structur-
al changes and myocardial injury [23-24]. Integration of bio-
marker data into risk prediction algorithms may enhance risk 
stratification and facilitate targeted therapeutic interventions.

Autonomic modulation

Although described mostly in animal experimental models 
and patients with AF, the role of the autonomic nervous sys-
tem (ANS) dysregulation, including heterogenic or increased 
autonomic innervation of the cardiac tissue, contributes to 
atrial arrhythmogenesis and treatment resistance [22, 32].  
Assessment of stellate ganglion nerve activity and vagal nerve 
activity may be beneficial in the prognostic evaluation of ta- 
chyarrhythmias. Novel intervention strategies targeting sym-
pathetic activation or vagal tone may enhance procedural 
success rates and reduce arrhythmia recurrence in suscepti-
ble individuals [33-35].

    Individualized arrhythmia  
    considerations

The characteristics of the AT itself profoundly influence the 
success of catheter ablation. AT can arise from various mecha-
nisms (including focal ectopy, reentrant circuits, triggered ac-
tivity), each requiring distinct ablation strategies for success-
ful termination. Focal AT originates from discrete sites within 
the atria, often exhibiting centrifugal activation patterns and 
rapid ectopic firing rates [1-2]. In contrast, reentrant AT in-
volves the formation of macro-reentrant circuits, commonly 
involving areas of scar or abnormal tissue conduction [1-2].   
Electrocardiographic features, such as P-wave morphology, 
atrial activation patterns and atrial substrate characteristics, 
provide valuable insights into the underlying arrhythmia 
mechanism and guide ablation strategies [2]. Advanced im-
aging modalities, such as cardiac magnetic resonance imaging 
(MRI) and three-dimensional electroanatomic mapping sys-
tems, offer additional tools for characterizing arrhythmogenic 
substrates and optimizing ablation targets [1-2, 36] (Figure 2, 
Figure 3).

Substrate-focused approach

Important factors to consider are the location, origin and 
pathophysiology of the arrhythmogenic substrates. ATs more 
often emerge from foci located in the right atrium, most com-
monly from crista terminalis, which is associated with a good 
prognosis and long-term ablation success rate [1, 7, 37]. On 
the contrary, procedures performed in delicate regions of the 
atria, close to critical structures (e.g. atrioventricular node 
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(AVN) or local nerves) require a more cautious approach and 
pose a greater risk of complications [1-2].

Precision medicine approaches recognize the heteroge-
neity of atrial substrate underlying AT and tailor ablation strat-
egies accordingly. While procedural advancements, namely 
electroanatomic mapping modalities, have led to significant 
improvement in ablation success rate [38], the use of non-in-
vasive imaging modalities, such as magnetic resonance is not 
always beneficial, when combined with standard diagnostic 
protocol [39]. However, in some studies, the assessment of 
late gadolinium enhancement (LGE) patterns in cardiac MRI – 
consistent with atrial fibrosis and scarring – has been shown 

to significantly increase procedural success rate and decrease 
risk in ablation of AF and AT substrates [36, 40-41]. Other im-
aging modalities, such as speckle-tracking echocardiography 
can be used to assess the risk of arrhythmia recurrence after 
catheter ablation [42]. 

Additional factors, including the origin of atrial scarring 
can contribute to the clinical characteristics of AT treatment. 
The emergence of substrates after surgical procedures involv-
ing atria is well known. However, the phenomenon of spon-
taneous scarring (SS), unrelated to prior surgery or significant 
structural heart disease can contribute to the development of 
atrial arrhythmia. Patients with SS have a higher prevalence of 

Figure 2. Electrocardiogram of focal AT

Figure 3. Electrocardiogram of reentrant AT
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AT, with a lower ablation success rate and an increased risk of 
concomitant sinus node dysfunction [43-44].

Interestingly, novel techniques of patient-specific sub-
strate modelling are being investigated, including MRI-based 
myocardial fiber organization. In silico this technique has 
shown satisfying results in both focal and rotor-based AT, 
when compared to procedural data such as local activation 
time (LAT) tracking accuracy [8].

Procedural factors

Technical aspects of the ablation procedure significant-
ly contribute to its success. Operator experience, catheter 
technology, mapping methodologies and energy delivery 
modalities influence procedural efficacy and safety. Experi-
enced operators with proficiency in catheter manipulation, 
electroanatomic mapping (EAM) interpretation and ablation 
lesion creation are essential for achieving optimal outcomes. 
Comprehensive procedural planning, including pre-procedur-
al imaging, EAM, and intra-procedural monitoring, optimizes 
ablation outcomes and minimizes procedural complications 
(Figure 4).

In general, the choice of catheter type and energy source 
depends on the arrhythmia mechanism, atrial anatomy and 
operator preference. Emerging techniques, such as contact 

force sensing catheters, high-density mapping and robotic 
navigation systems, hold promise for further improving pro-
cedural success rates and reducing complication risks.

Contact force sensing catheters

Optimal catheter-tissue contact force (CF) and lesion qual-
ity are crucial for procedural precision and efficacy, leading to 
better patient outcomes. Maintaining optimal CF enhances le-
sion transmurality, reduces impedance changes and minimiz-
es the risk of steam pops and thrombus formation. CF-sens-
ing catheters provide real-time, quantitative feedback during 
ablation procedures, that is normally derived from indirect 
parameters, e.g. baseline impedance, tactile feedback and 
electrogram (EGM) amplitude. Although some studies have 
promising results regarding the decreased number of energy 
applications and total procedure time during radiofrequency 
(RF) ablation, the available randomized controlled trials (RCTs) 
have not proved the superiority of CF-sensing catheter over 
standard equipment [45-47].

Energy delivery

Radiofrequency (RF) energy remains the most commonly 
used ablation modality, delivering localized thermal energy 

Figure 4. Three-dimensional mapping of atrial potentials during an electrophysiological study
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to create transmural lesions. However, RF ablation may be 
limited by inadequate lesion depth, tissue charring and the 
risk of collateral damage to adjacent structures. In contrast, 
cryoablation, utilizing freezing temperatures to produce re-
versible tissue injury, provides more accurate and localized le-
sion application. Current data shows that RF ablation remains 
the most effective method, although cryoablation may be 
considered during procedures performed in regions of close 
proximity to vital structures (e.g. near the phrenic nerve or in 
para-Hisian arrhythmic substrates) [1-2, 48-49]

Modulation of ablation energy parameters, including 
power, duration and lesion depth, optimizes lesion formation 
and procedural efficacy. Novel energy delivery modalities, 
such as pulsed field ablation (PFA), offer precise and con-
trolled lesion creation while minimizing collateral damage to 
surrounding tissues [50-51]. PFA utilizes non-thermal, rapid 
electrical pulses to induce cell death mediated by membrane 
electroporation [50]. Current data supports the possible ef-
ficiency and safety of this modality in the treatment of ATs, 
however no RCTs have been published, comparing its out-
comes to standard treatment protocol [50-54].

Mapping technologies

Standard electrophysiologic mapping, based on local acti-
vation time (LAT) assignation can be insufficient, often upon ex-
amination of low-voltage regions within atrial scarring [9, 55]. 
In recent years we have seen the introduction of high-resolu-
tion mapping systems, such as high-density mapping (HDM) 
catheters and basket catheters, which allow for more detailed 
characterization of atrial substrate and precise identification 
of arrhythmia targets [9, 55]. These technologies enable op-
erators to create accurate electroanatomic maps of the atria, 
facilitating targeted ablation and reducing procedural times 
[1-2, 9, 55-56]. Nevertheless, HDM has also been shown to 
lack accuracy, displaying local pseudo-reentrant patterns in 
patients with AT upon encountering electric wavefront colli-
sion or annotating noise, resulting in incorrect lesion applica-
tion during ablation [56]. Other advanced methods, such as 
ripple mapping (RM), which serves as a three-dimensional 
graphic representation of electrograms, have been proven to 
increase the success rate of AT ablation [56-58].

Innovative pacing and activation mapping techniques, 
including entrainment mapping, voltage mapping, and 
pace-mapping algorithms, aid in the identification of arrhyth-
mia mechanisms and critical isthmuses. Entrainment mapping 
confirms the participation of specific sites within the reen-
trant circuit, guiding targeted ablation strategies [59]. Voltage 
mapping identifies areas of low-voltage substrate and scar 
tissue, delineating regions at high risk for arrhythmia recur- 
rence [60-61]. 

Furthermore, introduction of functional substrate map-
ping (FSM) may lead to a more accurate assessment of atrial 
electroanatomic remodeling or heterogeneity. This method 
investigates activation complexity and conduction velocity, 
calculating conduction delay between adjacent tissue loca-
tions. Current data supports the correlation between critical 
isthmus (CI) location in macro-reentrant ATs, low voltage re-
gions and findings such as deceleration zones during isochron-
al late activation mapping, achieved via FSM during sinus or 
paced rhythm. FSM may provide additional guidance for sub-
strate mapping and lesion placement in AT ablation [62-64].

Additionally, adjunctive strategies, such as adenosine- 
-guided effectiveness assessment may help identify areas of 
incomplete isolation, facilitating targeted substrate modifica-
tion and reducing arrhythmia recurrence rate [54, 65].

Imaging-guided ablation

Advanced imaging modalities can provide detailed ana-
tomical information and substrate characterization for target-
ed ablation, not only in the pre-procedural planning period but 
also during the intervention. Intracardiac echocardiography 
(ICE) and rotational angiography allow real-time visualization 
of catheter position and can be used to assess the accuracy of 
catheter-tissue contact, which translates to better procedural 
outcomes [66]. ICE imaging has been reported to facilitate ab-
lation of critically located substrates, as in para-Hisian ATs [66],  
and in cases with altered atrial anatomy, as in patients with 
surgically corrected congenital heart disease [67]. Intracardiac 
thrombus detection is another potential contribution of this 
imaging modality to procedural safety is attributed to [68]. 
Additionally, when combined with EAM techniques, ICE can 
serve as a substitute for fluoroscopy monitoring in transseptal 
puncture for ablation of left-sided arrhythmias [69].

Data science meets medicine
 

     Computational modeling and simulation

Advanced analysis of electrogram characteristics, includ-
ing signal amplitude, duration, fractionation, and voltage 
mapping, provides insights into atrial substrate properties 
and arrhythmia mechanisms. Precise delineation of atrial 
anatomy, scar tissue distribution and arrhythmogenic foci lo-
calization guides catheter navigation and lesion creation dur-
ing ablation procedures. Novel algorithms utilizing machine 
learning and artificial intelligence techniques can identify 
subtle electrogram features associated with arrhythmogenic 
substrate and may eventually be able to predict ablation suc-
cess [13, 70-71]. 
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Artificial intelligence (AI) and machine 
learning

Artificial intelligence (AI) and machine learning algorithms 
integrated into electrophysiology workflows hold promise for 
improving procedural planning, navigation and outcomes. 
AI-driven algorithms analyze vast amounts of patient data, 
including electrocardiographic signals, imaging studies and 
procedural outcomes, to identify patterns and predict optimal 
treatment strategies. By assisting in substrate identification, 
ablation site selection and lesion assessment, AI-powered 
technologies have the potential to enhance procedural suc-
cess rates and reduce complication risks. By analyzing diverse 
patient characteristics, clinical variables, imaging parameters, 
and electrophysiological data, machine learning algorithms 
identify complex relationships and patterns that inform indi-

Advanced age • Decreased success rate and 
higher procedural risk 

Comorbidities (e.g. hypertension, 
DM, CAD, valvular disease, 
cardiomyopathy, obesity) 

• Decreased success rate and 
higher procedural risk 

• Higher risk of recurrence 
Atrial myocardium fibrosis • Potentially decreased 

success rate and worse long-
term outcomes 

Unfavorable genetic and 
immunological profile 

Prior magnetic resonance imaging • LGE mapping – increased 
success rate and decreased 
procedural risk 

• Myocardial fiber 
organization – potentially 
increased success rate  

Atrial strain on echocardiography • Better recurrence prediction 
Intracardial echocardiography • Increased safety and 

improved outcomes 
Catheter contact force assessment • Potentially shorter 

procedure duration and less 
energy applications 

Radiofrequency ablation • More efficient 
• Higher risk of adverse 

outcomes 
Cryoablation • Less efficient 

• More precise and safe in 
critical locations 

Advanced mapping technologies • HDM – more precise; can 
lead to unnecessary 
applications in regions of 
pseudo-reentry 

• RM – increased success rate 
• FSM – better substrate 

identification; increased 
accuracy 

 
 

vidualized treatment decisions [14, 72-73]. 
Integration of real-time data streams and 
continuous learning frameworks enhances 
the adaptability and accuracy of predictive 
models over time [14,  72-74].

 Coordination of multidisci-
plinary care 

Effective implementation of precision 
medicine in AT ablation requires close col-
laboration among multidisciplinary teams, 
including electrophysiologists, imaging 
specialists, genetic counselors and clinical 
pharmacologists [75]. Multidisciplinary care 
coordination can provide comprehensive 
evaluation, personalized treatment plan-
ning, and integrated follow-up care to opti-
mize patient outcomes [75]. As in all fields 
of contemporary medicine, shared deci-
sion-making principles can be effective in 
empowering patients to actively participate 
in treatment decisions, contribute to their 
care plans, and engage in lifestyle modifica-
tions that support long-term rhythm control 
and cardiovascular health (Figure 5). 

    Conclusion

Successful ablation of AT requires a mul-
tidimensional approach, incorporating pa-
tient-specific factors, arrhythmia character-
istics, procedural techniques and long-term 

monitoring strategies. Continued research efforts aimed at 
elucidating novel prognostic markers, refining ablation strat-
egies and leveraging digital health technologies are essential 
for advancing the field of AT ablation and improving patient 
care in the future. Precision medicine applications hold prom-
ise for improving the success and safety of atrial tachycardia 
ablation by individualizing treatment strategies based on pa-
tient-specific characteristics. 
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Figure 5. Factors impacting the AT ablation success and prognosis
CAD – coronary artery disease; DM – diabetes mellitus; FSM – functional substrate 
mapping; HDM – high density mapping; LGE – late gadolinium enhancement;  
RM – ripple mapping
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