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Abstract 

The increasing prevalence of diabetic kidney disease (DKD), a common complication of type 1 and type 2 dia-
betes, is becoming a leading risk factor of developing end stage renal disease (ESRD). The multiple mechanisms 
involved in renal tissue damage are a challenge for effective targeted therapy. Urolithins are metabolites ge-
nerated by gut microbiota upon dietary intake of plant-derived ellagitannins. Multidirectional effects of the-
se compounds include their anti-inflammatory, antioxidant, anti-proliferatory, anti-migratory and antiglycative 
properties that are mediated by modulation of signaling pathways and gene expression. Biochemical properties 
of urolithins indicate their capacity to regulate numerous mechanisms responsible for developing the hypergly-
cemia-induced tissue injury. The potentially beneficial effects of urolithins on podocytes, the most vulnerable 
renal cells should be particularly considered. The purpose of this review is to provide the evidence from the in 
vivo and in vitro studies showing that urolithin-based therapy could be a useful tool for protecting the kidneys 
from damage in diabetes.  
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terial metabolism in gastrointestinal tract of dietary ellagi-
tannins (ETs) and their constituent, ellagic acid (EA) [2]. ETs 
and EA are naturally occurring polyphenols found in numer-
ous fruits and vegetables, e.g. pomegranates, raspberries 
and nuts [3]. Their beneficial health properties including 
anti-inflammatory, antioxidant and antiproliferative effects 

Introduction

Urolithins (hydroxylated dibenzo [b,d]-pyran-6-one de-
rivatives) are a family of bioactive compounds which were 
first isolated from beaver scent glands in 1949 [1]. Their 
presence in human and animal intestines is a result of bac-
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have been proven in both animal and human models. Vari-
ous studies demonstrated the protective effects of ETs and 
EA against chronic diseases of the cardiovascular system, 
neurodegenerative diseases, diabetes and cancer. Howev-
er, ETs and EA have poor bioavailability and their biological 
activity is associated with urolithins that are more easily 
absorbed in gut [4-8]. The synthesis of urolithins depends 
on the composition in the gut of specific bacteria that var-
ies between the individuals. The identification of the micro-
organisms responsible for the complete transformation of 
EA into the final urolithins is still under research. According 
to the recent findings, different numbers of Synergistetes 
phylum and members of Coriobacteriaceae (genus Gor-
donibacter urolithinfaciens and Gordonibacter pamelaeae) 
and Lachnospiraceae families can be used to discriminate 
between individuals producing certain urolithin forms [9-
10]. Thus, after absorption and passage through the liver, 
different urolithins can be found in human body fluids and 
tissues at nanomolar to micromolar concentrations. Ab-
sorbed urolithins undergo phase I and phase II metabolism, 
resulting in glucuronide, sulfate and methylated derivatives, 
while small amounts can be found in the form of free agly-
cones [2, 11-12].

Both the conjugated and unconjugated forms of uro-
lithins can be detected in human plasma and urine even 
48 hours after consumption of ET-rich food [6, 13-14]. It 
is clear therefore that bioactive urolithins directly contact 
renal tissue during the passage through the nephron. It 
seems plausible that the cells constituting the glomerular 
filter, as well as epithelial cells lining the urinary tract may 
be affected by these compounds. Antioxidant, anti-inflam-
matory and antimicrobial properties of these compounds 
could be beneficial in treating several renal diseases, includ-
ing diabetic kidney disease (DKD) [15-16]. Nevertheless, so 
far there are not many data on the effects of urolithins on 
the renal tissue. The purpose of this review is to provide the 
evidence from the in vivo and in vitro studies showing that 
urolithin-based therapy could be a useful tool for protect-
ing the kidneys from damage in diabetes.

Material and methods

We searched the Medline, Scopus and Science Direct 
databases for articles published from 2011 to April 2021 
using the following keywords: kidney disease, urolithins, 
ellagic acid, elagitannins, podocytes, polyphenols, diabe-
tes, nephropathy, transforming growth factor and relevant 
abbreviations (e.g. TGFβ, CKD, DN). Older articles describe 
pathomechanisms and serve as context for the presented 
new information. The inclusion criteria were: full-text ar-
ticle, on-topic. Case reports and letters to the Editor were 
excluded from the review.

Results

Bioavailability and metabolism 

Similarly to other phytochemicals, ETs are poorly absorbed 
in the gut. However, following consumption the ETs undergo 
spontaneous hydrolysis into EA in the upper gastrointestinal 
tract. Microbes residing in the intestine further transform EA 
yielding a series of bioactive compounds including urolithins 
that are characterized by a dibenzopyranone structure and 
a decreasing number of phenolic hydroxyl groups (Figure 1) 
[4, 17-18]. Due to their high lipophilicity, urolithins are much 
more readily absorbed than the original polyphenols. 

After absorption in the gut, urolithins rapidly undergo me-
tabolism by phase II enzymes in enterocytes [8, 19]. Once in 
the bloodstream, conjugated and unconjugated metabolites 
reach liver via portal circulation and are further subjected to 
phase II metabolism in hepatocytes. Due to enterohepatic re-
circulation, part of urolithin conjugates can be secreted with 
bile back to the small intestine [5, 20]. Analyses of human 
and animal blood and urine samples indicate that urolithins 
A and B and their glucuronide and sulfate conjugates are pre-
dominant urolithin isoforms. In particular, Uro A is considered 
to be a major metabolite in humans. However, depending on 
the study design, the measured final plasma concentrations 
vary substantially reaching 0.1–35 µM [4,8,15]. Human and 
animal studies have shown that urolithin metabolites accu-
mulate in the gall bladder and urinary bladder [21], prostate 
gland [22-23], colon and intestinal tissues [22], whereas no 
accumulation in other tissues (e.g. muscles, adipose tissue, 
heart, liver, kidney) was observed [21].

Individual variability in the composition of gut micro-
biome results in significant differences in ET metabolism 
and urolithin type production, which is defined as different 
metabotypes [8]. Specific gut microbiota profile or illnesses 
generating dysbacteriosis may contribute to different bacte-
ria composition and levels, consequently leading to various 
potential health effects [24-26]. Therefore, it is essential to 
consider the influence of factors such as age, gender, race, 
health condition and geographic origins on the polyphenol 
profile after consumption of ETs-rich products. Based on the 
amount and type of urolithins excreted in the urine from 
healthy volunteers, three different urolithin metabotypes 
have been described: metabotype A (only Uro A metabolites 
excreted), metabotype B (Uro B and/ or Uro B metabolites 
excreted in addition to Uro A and isourolithin A) and uro-
lithin metabotype 0 (no urolithins/ urolithin metabolites 
excreted) [13]. Significant interindividual variability was also 
reported in the first pharmacokinetic study, that showed for 
the first time that EA bioavailability was not increased after 
intake of a high free EA dose. It was concluded that factors 
such as pH and food protein content have a strong impact on 
EA bioavailability [19].



Figure 1. Dietary elagitannins and ellagic acid are converted by the gut microbiota to urolithins that are readily absorbed to the blood-

stream. Most of circulating urolithins undergo II phase metabolism in liver and the conjugates as well as free aglycones reach various 

peripheral tissues. Urolithins from filtered plasma pass the nephron to be excreted in urine. Some urolithin metabolites are also excre-

ted in faeces [18, 75]

Biological activity 

The direct biological effects of urolithins have been exam-
ined in different cell models, such as various cancer cell lines, 
fibroblasts, immune, endothelial and epithelial cells [4, 27-28]. 

The studies on the chemopreventive potential of EA and 
its metabolites Uro A and Uro B revealed that their anti-

-tumor properties, including the influence on cancer cell 
apoptosis and proliferation involve alterations in the ex-
pression of genes involved in signaling (MAPK) pathways, 
oncogenes (K-Ras, c-Myc), suppressors (DASP6, Fos), p53 

protein, growth factor receptors (FGFR2, EGFR) and multi-
ple genes involved in cell cycle [11, 29-33]. EA, as well as 
urolithins (and principally Uro A) exhibit proapoptotic activ-
ity via caspase-dependent pathways, in which activation of 
caspases 3, 8 and 9 has been reported [34-35]. Inhibition 
of cancer growth is mediated by suppression by Uro A and 
Uro B of Wnt/ β-catenin signaling [36-37]. 

Moreover, anti-tumor and anti-metastatic effects of 
urolithins include inhibition of migration of cancer cells by 
diverse mechanisms such as suppressing the K-ras/HMGA2 
expression or by decreasing actin polymerization [38-39]. 
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Table 1. Summarizes diverse biological effects exerted by urolithins

Biological 
activity Cell line Signaling pathway Refe-

rences Urolithin Urolithin 
Effect

Anti-tumor 
(anti-

-proliferative, 
anti-

-metastatic, 
pro-apoptotic)

Caco-2 cells
Caco-2 cells
Caco-2 cells

SW 480
Caco-2 cells

HCT-116, Caco-2 cells
HCC cells
HepG2

Ishikawa cells (ECACC)

MAPK kinase
Oncogenes (K-Ras, c-Myc)
Suppressors (DASP6, Fos)

p53 protein
Growth factor receptors (FGFR2, EGFR)
Cell cycle genes (CCNB1, CCNB1IP1)

Wnt/ β-catenin
K-ras/HMGA2

Actin polymerization

[30]
[30]
[30]

[11, 33]
[30]
[30]

[36-37]
[35]
[38]

UroA, UroB
UroA, UroB
UroA, UroB

UroA
UroA, UroB
UroA, UroB
UroA, UroB

UroA
UroA

↑/↓
↑/↓
↑/↓

↑
↑/↓
↑/↓

↓
↓
↓

Proapoptotic T24 cells, HepG2, Caco-2 cells, 
SW 480, HT-29 Caspases: 3, 8, 9 [34-35] UroA, UroB, 

8-OMe UA ↑

Inhibition 
of the cell 
motility 

Human aortic endothelial cells, 
monocytes, human fibroblasts

C-C motif ligand 2 (CCL2)
plasminogen activator inhibitor-1 (PAI-1)

IL-8
[40]

UroA
UroA
UroA

↓
↓
↓

Anti-
-proliferative, 

anti-renal 
fibrosis

HK–2 cells TGF- β1/ Smad 
NF-κB [66] UroB ↓

Chondrocytes, HepG2 NF-κBp65 [41-43]
Anti- T24 cells SOD and GSH-Px [41]

-inflammatory HepG2 AMPK and MAPK  kinases [41]
and anti- Murine CD4+ T cells MicroRNA-10a-5p [17] UroA ↓
oxidant Caco-2 cells Aryl Hydrocarbon Receptor (AHR) [3]

Murine kidney TNF-α, IL-18, IL-23, MIP2 [63]
HK–2 cells TGF- β1, IL-6, NF-κBp65 [66]

Suppression 
of NO release  Murine microglial cells, macrophages TNF-α, IL-6 and IL-β [28, 43] UroB, UroA ↓

Autophagy

Murine hippocampal tissue
J774.1 murine macrophages

N2a cells, primary murine cortical neurons
Murine kidney

MicroRNA-34a , SIRT1
Akt/mTOR signaling

Endoplasmic reticulum stress
TFEB  CLEAR motif-containing genes

[44]
[43-44]

[45]
[46]

UroA
UroA
UroA
UroA

↑
↓
↓
↑

Suppression by urolithins of cell motility accounts also for the 
mechanisms of their anti-inflammatory activity. By moder-
ate down-regulation of chemokine C-C motif ligand 2 (CCL2), 
plasminogen activator inhibitor-1 (PAI-1) and decreased ex-
pression of IL-8, Uro-A and Uro-A glucuronide inhibited in-
duced by TNFα monocyte adhesion and human fibroblast and 
aortic endothelial cell migration [40]. The anti-inflammatory 
and antioxidant activities of Uro A and Uro B involve inhibi-
tion of the nuclear factor kappa-B (NF-κB) pathway and mod-
ulation of phosphorylation of diverse kinases such as AMPK 
and MAPK pathway members [41]. In the IL‒β1 stimulated 
rat chondrocytes and in LPS-stimulated macrophages, Uro A 
pre-treatment inhibited NF-κBp65 translocation into the nu-
cleus [42-43], while in the HepG2 hepatic carcinomas cell line, 

Uro A decreased p65 expression and increased the activity 
of intracellular antioxidant enzymes SOD and GSH-Px [41]. 
Suppression of NO production, decrease of proinflammatory 
molecules such as TNF-α, IL-6 and IL-β at the mRNA and protein 
levels was observed in the presence of Uro B in the LPS-
activated mouse microglial cells and in J774 murine macro-
phages stimulated with LPS [28,43]. Another study demon-
strated that Uro A, by regulating miR-10a-5p, reduced the pro-
liferation of murine CD4+ T cells, that are a trigger to immune 
response [17]. Furthermore, Uro A exhibited anti-inflamma-
tory effects by directly binding the aryl hydrocarbon receptor 
(AHR). Acting as a selective AHR antagonist, Uro A inhibited 
its transcriptional activity which resulted in attenuating cyto-
kine-induced inflammatory signaling in Caco-2 cells [3]. 

-



It has been demonstrated that Uro-A exhibits protec-
tive properties against brain aging [44] and against ischemic 
neuronal and ischemia reperfusion renal injury (IRI) [45-46]. 
These anti-inflammatory and cytoprotective effects include 
induction by Uro A of autophagic flux, which was confirmed 
by observed expression of the autophagic markers LC3-II and 
p62 [43-45]. Some recent studies show that Uro A activates 
autophagy by upregulating Sirtuin 1 (SIRT1) signaling [44] and 
by impairing Akt/mTOR signaling [43-44]. Within the kidney, 
Uro A attenuated IRI by inducing autophagy through activa-
tion of transcription factor EB (TFEB) followed by regulation 
of target genes of Coordinated Lysosomal Expression and 
Regulation (CLEAR) network [46]. 

Safety of urolithin administration

Considering that Uro A is the most representative uro-
lithin form and potential therapeutic agent, safety profile of 
this compound was evaluated in several studies. A compre-
hensive study by Heilman et al. [47] indicated that in both 
28-day and 90-day observations in rats, orally administered 
synthetic Uro A did not modify any clinical and blood param-
eters, did not disrupt homeostasis and did not indicate any 
specific toxic mechanisms. The 4-week clinical trial in which 
up to 2000 mg oral Uro A doses were administered to elder-
ly volunteers confirmed that the treatment had no adverse 
health effects. The observed 31 unfavorable effects were 
determined to be unrelated to the compound tested [48]. 
On the basis of the above findings, the US Food and Drug 
Administration already issued a favorable review for using 
Uro A as a food ingredient [49].

Urolithins in diabetes

Pathophysiology of diabetes is strictly linked to meta-
bolic changes and chronic inflammation. Overproduction of 
multiple pro-inflammatory cytokines, growth factors and re-
active oxygen species (ROS) account for the diabetes- relat-
ed damage of tissues and organs [50-51]. Thus, antioxidant 
and anti-inflammatory properties of urolithins may exert 
a protective role in diabetic state [52]. It was reported re-
cently that while the in vivo occurring extensive conjugation 
severly hampers the activity of urolithins, systemic inflam-
mation triggers tissue deconjugation of Uro A glucuronide, 
yielding free aglycone with remarkably higher biological ac-
tivity [53]. Indeed, the in vivo, as well as the in vitro studies 
confirmed the beneficial effects of unconjugated Uro A and 
Uro B administration to diabetic rats. Urolithin injections 
prevented the early cardiac inflammatory response as well 
as the occurrence of cardiac dysfunction in the streptozocin-

-induced (STZ) type 1 diabetes rats [54]. In cardiomyocytes 
cultured in the presence of 25mM glucose, Uro B signifi-
cantly reduced the glucose-induced high levels of monocyte 

chemoattractant protein-1 (MCP-1), the pro-inflammatory 
cytokine fractalkine and vascular endothelial growth factor 
(VEGF). In fibroblasts exposed to high glucose, expression of 
fractalkine was reduced by Uro A, Uro B, Uro C and Uro D 
[55]. In diabetes, hyperglycemia is also a causative factor for 
neurodegeneration and development of Alzheimer’s disease. 
Uro A injections in a STZ- induced diabetic mouse prevented 
mitochondrial ROS accumulation, amyloidogenesis and neu-
ronal cell death, which indicates that Uro A-based therapy 
may be useful in prevention and treatment of diabetes-asso-
ciated neuronal impairment [56]. Viability of neuronal cells 
exposed to oxidative stress was significantly increased in 
the presence of Uro A and Uro B [57]. In addition, via facil-
itating L-type Ca2+ channel opening, Uro A and Uro C have 
been shown to enhance insulin secretion in cultured INS-1 
beta-cells and isolated rat islets of Langerhans [58].

One of the hallmarks of diabetes mellitus (DM) is spon-
taneous non-enzymatic glycation of proteins, lipids and nu-
cleic acids. Dependent on the level and duration of hypergly-
cemia this process leads to formation of advanced glycation 
end products (AGEs) that permanently modify protein struc-
tures and functions, contributing to oxidative stress and 
development of chronic diabetic complications [57, 59-60]. 
Anti glycative properties of Uro A and Uro B were shown in 
several in vitro experiments in which glycation of the bovine 
serum albumin (BSA) was strongly hampered by these com-
pounds. The effects were concentration-dependent and the 
mechanisms included urolithins scavenging for reactive car-
bonyl species [57, 61]. 

Urolithins in diabetic 
and non-diabetic kidney disease

Although urolithins do not accumulate in the kidney, 
the circulating urolithin-rich plasma has continuous contact 
with renal structures [2, 6, 14], possibly affecting the renal 
tissue. Indeed, in the experimental rat model based on cis-
platin-induced nephrotoxity, Guada et al. revealed that Uro 
A effectively attenuated kidney damage by inhibiting the in-
flammatory cascade and apoptosis pathway. Furthermore, 
anti-inflammatory cytokine IL-10 was markedly increased in 
the kidneys of Uro A-treated animals [62]. Similarly, in the 
cisplatin-induced acute kidney injury (AKI) mouse model, 
orally given nanoparticle-encapsulated Uro A not only re-
duced mortality but also protected the kidneys from oxida-
tive stress and cytotoxic injury including necrosis, tubular 
atrophy and glomerular hypertrophy [16]. Also, in another 
experiment, Uro A pretreatment of mice receiving cisplatin 
for 3 days not only improved renal parameters but also at-
tenuated oxidative and nitrative stress and downregulated 
the expression of pro-inflammatory cytokines and chemok-
ines TNFα, IL-23, IL-18 and MIP2 [63] Beneficial properties 
of Uro A were also documented in the kidney ischemia 
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reperfusion injury (IRI) in mice. Attenuation of renal injury 
was associated with Uro A – dependent reduction of pro-

-inflammatory cytokines TNFα, IL1β, MIP1α and promotion 
of autophagy [46]. Subcutaneously administered Uro A also 
increased activity of antioxidant enzymes and attenuated 
expression of pro-inflammatory cytokines in the kidneys of 
aging mice [64]. 

Modulation of the renal TGFβ system

The transforming growth factor beta (TGFβ) family of mul-
tipotential cytokines controls numerous physiological and 
pathological events such as embryogenesis, carcinogenesis 
and the immune response [15, 65]. Regulation of cell prolifer-
ation, differentiation, migration and apoptosis involves ability 
of TGFβ to affect the transcription and translation processes. 
The hyperglycemia and inflammation associated with diabe-
tes strongly activate the TGFβ system, resulting in undesir-
able changes within tissues. In diabetic kidney disease (DKD), 
overactive TGFβ plays a prominent role in promoting renal 
cell hypertrophy, fibrosis and stimulating extracellular matrix 
(ECM) accumulation. So far, urolithins have been shown to 
counteract the TGFβ-dependent effects in unilateral uret-
eral obstruction (UUO) rats and in cultured renal epithelial 
cells. In the UUO model, Uro B treatment abolished renal 
damage and fibrosis, maintained tubular and glomerular 
structure and reduced inflammatory cell infiltration. More-
over, expression levels of TGFβ1, NF-κB p65, angiotensin II, 
collagen IV and several pro-inflammatory factors was signifi-
cantly reduced. In cultured proximal tubular HK-2 cells, Uro B 
inhibited stimulated by TGFβ cell proliferation and restored 
cell morphology. It was demonstrated that in the in vivo, as 
well as in the in vitro experiments, protective effects of Uro B 
were related to the down-regulation of TGF-β1/Smad, most 
likely via inhibition of the NF-κB signaling [66]. Overproduc-
tion of the plasminogen activator inhibitor (PAI-1) results in 
accumulation of ECM in acute and chronic kidney diseases, 
including diabetic nephropathy. In stimulated by TGFβ renal 
epithelial NRK-52e cell line significant increase of PAI-1 re-
lease was inhibited by Uro A in a dose-dependent manner 
[67]. The positive feedback loop between TGFβ and PAI-1 has 
also been documented in diabetic kidney [68]. Hence, target-
ing the TGFβ- and PAI-1-related pathways by urolithins might 
be an effective aproach in treating renal fibrosis and inflam-
mation, particularly in the DKD. 

Potential effects of urolithins 
on podocytes

Podocytes are terminally-differentiated, highly special-
ized cells of epithelial origin covering the outer aspect of 
glomerular capillaries. Due to their inability to replenish in 
mature kidney, podocyte loss is believed to initiate irrevers-

ible impairment of the glomerular filter [69-70]. Clinical and 
experimental data suggest a key role of podocytes in the 
development of diabetic nephropathy (DN) [71]. Podocyte 
depletion is considered to be the first indicator of glomer-
ular destruction in diabetic patients, even before the ap-
pearance of proteinuria [72]. For preventing detachment, 
podocytes rearrange their structure and migrate to seek 
attachment in other sites of glomerular basement membrane 
However, increased migration may disrupt the slit diaphragms 
between neighboring cells and the tightness of glomerular 
filter resulting in proteinuria [73]. Recently performed in our 
laboratory experiments showed that Uro A effectively inhibit-
ed induced by high (30 mM) glucose motility of mouse podo-
cytes (unpublished data), which could be beneficial in the 
diabetic kidney.

Diabetic milieu induces multiple mechanisms in podo-
cytes that directly affect functions and viability of these cells. 
In addition to AGEs and direct cytotoxic effects of hypergly-
cemia, primarily via increased production of ROS, deleterious 
for podocytes is up-regulation of their local renin-angiotensin 
and TGFβ systems and increased synthesis of VEGF. Moreover, 
angiotensin II, TGFβ and VEGF reciprocally modulate their 
production, this way perpetuating podocyte and glomerular 
impairment [74]. So far, our knowledge on urolithin-mediated 
effects on the podocytes is very limited. However, it seems 
likely that similarly to other cells, urolithins in podocytes may 
regulate the activities of TGFβ, VEGF, antioxidant systems and 
multiple signaling pathways and kinases that are sensitive to 
urolithins in other cell types. The urolithins’ ability to attenu-
ate the harmful hyperglycemia-induced effects could protect 
these vulnerable cells from injury.

Conclusions

A growing body of evidence suggests that urolithins are 
potent multifunctional compounds capable of regulating 
a variety of cellular processes. Since they do not act through 
specific receptors, urolithins may affect various cell and tis-
sue types. Not all body tissues accumulate urolithins but all 
urolithins present in plasma pass the glomerular filter, thus 
directly contacting kidney cells. However, so far relatively 
little is known about the effects of urolithins on kidney func-
tion and data concerning action of urolithins on glomerular 
cells is particularly sparse. Yet, the available reports definite-
ly show that urolithin administration prevents inflammation 
and diabetes-induced changes in renal tissue. Figure 2 sum-
marizes the current state of knowledge on urolithin-dependent 
protective effects in the kidney. The research on urolithins is 
growing and it can be expected that in the near future the 
beneficial effects of urolithins in kidney disease will be sup-
ported by ample evidence. 
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