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The usefulness and limitations of 
diffusion tensor imaging – a review study

Abstract 

Diffusion tensor tractography (DTI) has been used for planning of a brain pathology surgeries. Knowledge about 
the distances between neural tracts and brain tumours is believed to increase the patient safety and implies 
the extent of resection. The aim of the study was to demonstrate the contemporary possibilities and the clinical 
usefulness of DTI. Following the explanation of the technical basics of DTI, we presented the drawbacks and limi-
tations of this visualisation technique. The most commonly outlined tracts are corticospinal tract (CST), arcuate 
fasciculus (AF) and frontal aslant tract (FAT). Tumour located in frontal, parietal or temporal lobe can affect the 
course of the CST. There are two basic possibilities to visualise CST: deterministic and probabilistic. The usefulness 
of DTI seems limited in imaging the neoplasms of either frontal or temporal region causing aphasia, which infil-
trate the AF or the FAT. This limitation is probably related to divergent and patient-specific location of functional 
speech areas. Acquisition disturbances, ill-defined mathematical algorithms, surgery-related brain shift and de-
fining wrong non-functional brain area are the sources of DTI inaccuracy, which is limiting its clinical application.
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CNS or peripheral nervous system by using diffusion 
tensor imaging (DTI), a specific sequence of magnetic 
resonance (MR) [1]. Tractography allows reconstruc-
ting the neural fibres in colourful projections that run 
simultaneously through particular anatomical regions 
of the brain. Important neural pathways are tracked 

Introduction

 Tractography is a non-invasive method of visu-
alizing the white matter of central nervous system 
(CNS) structures in vivo. It is possible to determine 
the direction and continuity of neural fibres in either 
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Figure 1. Directionally encoded colour (DEC) sequence of the diffusion tensor tractography de-

picts the course of white matter fibres. In standard markings, the red colour means left-right, 

green front-back and blue top-to-bottom directions of white matter fibres

by utilising the connection map and their course corre-
lates with some pathological changes in the CNS [2-3]. 
That information is essential in neurosurgeon's pre-
operative planning, as it leads to an improvement in 
setting boundaries for tumour resection and decrease 
of post-surgery neurological deficits.

 Tractography utilises the data provided by the MR 
tensor, which returns information about size and the 
direction of the diffusion. The sketch of the white mat-
ter pathways through the selected anatomical points is 
based on the principles of voxel continuity [4]. There 
are several analytical methods used in the assessment 
of anatomical differences between specific groups of 
patients. Nevertheless, the most commonly used is the 
voxel-based analysis. It is easily adjustable to the needs 
of the neurosurgeon and makes it possible to assess 
the degree of tissue diffusion simultaneously thro-
ughout the encephalon, which points out the possible 
locations of tumour infiltrations. Another widely used 
method is an analysis of the region of interest (ROI) 
which enables the precise assessment of the degree of 
diffusion in hypothetically determined locations [5-6].

Studies conducted on neurosurgical patients reve-
aled that total or subtotal brain tumor resection leads 
to improved survival. The specific success rate is direc-
tly connected with a lower risk of tumour relapse [7-8]. 
From the patient’s perspective, it is crucial to maintain 
quality of life, motor function and speech after under-
going surgery [9]. The vast majority of available litera-
ture refers to the preclinical technical aspects of DTI 
and rarely describes its practical application. Curren-
tly, only several of these practical possibilities that DTI 
gives are utilised in modern 
neurosurgery. These need to 
be summarised in a compre-
hensive review, which is not 
only directed at neurosurge-
ons but also radiologists and 
neurologists. In this study, 
we reviewed not only the 
usefulness but also the po-
tential limitations of DTI in 
brain tumour surgery. 

Tractography

 Tractography is a me-
thod of spatial imaging of 
computational radiological 
data. It allows various neural 
fibres to be tracked, which is 
a result of different diffusion 
of a single voxel. Many pro-
fessional applications, both 

paid and freeware, are used for tracking, fusing of 
the sequences and comparative analyses. These are 
widely available and have great flexibility in the data 
processing. Images can be saved in a variety of formats, 
printed and transferred to operating rooms or used 
for research purposes. The most clinically valid and 
nonetheless spectacular graphic presentation of DTI is 
a directionally encoded colour (DEC) sequence. DEC is 
conditioned by the direction of the diffusion vector of 
white matter. According to built-in, automatic, anatomi-
cal atlases, applications allow precise determination of 
neural structures and some of the main fibre pathways. 
These structures are named regions of interest (ROIs). 
By setting one or more ROI, the application automati-
cally calculates and draws white matter fibres. To note, 
visualising an individual neural pathway is also possible. 
The software also allows sketching the location of the 
tumour concerning the previously designated path. 

At our department, we performed DTI for all pa-
tients with suspected tumour infiltration, according to 
internal DTI protocol, resulting in a total of 60 diffusion 
sampling directions acquired. Parameters of those MRI 
examinations were as follows: 

 ·     b-value: 1000 s/mm2, 
 ·     in-plane resolution: 1.95313 mm, 
 ·     thickness: 2 mm, 
 ·     angular threshold: 90°.

The obtained pattern of neaural tracts, as well as 
the outlined tumour, can be imported into the neu-
ronavigation system, which seems to be the leading, 
practical advantage of all DTI methods. 



There are two basic techniques for creating mo-
dels of neural pathways: probabilistic and determini-
stic. The deterministic approach implies drawing the 
fibres in the system by marking one starting point 
and another ROI. Utilising this technique, the defined 
neural bundle assumes only one direction assigned to 

the single voxel. Therefore, the main limitation of this 
approach is the high anatomical variability of neural 
pathways and the fact that some of the fibres inter-
sect each other [10]. Table 1 presents selected articles 
comparing both methods.

Author Title Year Tract
Probabilistic 

vs. 
Deterministic

Clinical impact

Zolal A et al. 
[1]

Comparison 
of probabilistic 

and deterministic fibre 
tracking of cranial nerves

2017
Cranial 
nerves: 
II, III,V, 
VII,VIII

Probabilistic
Probabilistic tracking 

is more effective 
than the previously 

described deterministic

Schlaier JR 
et al. [2]

Probabilistic vs. deterministic 
fibre tracking and the 

influence of different seed 
regions to delineate 

cerebellar-thalamic fibers 
in deep brain stimulation

2017 Dentate-rubro 
thalamic tract

Probabilistic
Probabilistic fibre tracking was 
more sensitive  and provides 

more accurate tracking solutions 
for dentate-rubro-thalamic tract

Jenabi M et al. 
[3]

Identification of the 
Corticobulbar Tracts of the 

Tongue and Face Using 
Deterministic and Probabilistic 

DTI Fibre Tracking in 
Patients with Brain Tumor

2015 Corticobulbar 
tract

Probabilistic

Probabilistic tractography 
successfully reconstructs the 
face- and tongue-associated 
corticobulbar tracts from the 

lateral primary motor cortex to 
the pons in both hemispheres

Jenabi M et al. 
[4]

Probabilistic fibre tracking 
of the language and motor 
white matter pathways of 
the supplementary motor 

area (SMA) in patients with 
brain tumors

2014
Broca's 
area 

to SMA
Probabilistic

The identification of unique 
areas of white matter 

according to the probabilistic 
method allows the location 

of the tract connecting 
Broca’s area to SMA

Li Z 
et al. [5]

Diffusion tensor
tractography of the arcuate 
fasciculus in patients with 
brain tumors: Comparison 
between deterministic and 

probabilistic models

2013
Arcuate 

fasciculus Probabilistic

Probabilistic tractography 
reconstructs the arcuate 

fasciculus more completely 
and performs better 

through areas of tumor 
and/or edema

Table 1. Comparison of methods of tractography: the probabilistic and deterministic. The practical application of each technique was 

extracted from the studies
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Burkett DJ 
et al. [6]

Deterministic 
Tractography 

of the Descending 
Tract of the Spinal 
Trigeminal Nerve 
Using Diffusion 
Tensor Imaging

2017

descending 
tract 

of the 
trigeminal 

nerve

Determinitsic

The identification of unique 
areas of white matter 

according to the probabilistic 
method allows the location 

of the tract connecting 
Broca’s area to SMA

Anthofer JM 
et al. [7]

DTI-based 
deterministic 
fibre tracking 
of the medial 

forebrain bundle

2015
medial 

forebrain 
bundle

Determinitsic

Deterministic tractography  
with different ROIs 
provides variable 

delineations of the course 
of the medial 

forebrain bundle

Most authors use a probabilistic method for ascer-
taining a specific tract. The obtained images of DTI are 
easy to interpret for most of them [17-18]. The advan-
tage of probabilistic tractography is an obtained ske-
tch of neural tracts that presents any structural chan-
ges of white matter adjacent to pathological changes 
[18]. On the other hand, the deterministic method, 
is mostly used for the analysis of the course of fibres 
that have their ending in the voxels with the lowest FA 
value [10]. For the clinical purpose, the deterministic 
model is chosen less frequently, although it has some 
clinical advantages. In our experience, the determini-
stic approach results in better visualisation of the corti-
cospinal tract (CST) adhering to tumours of the medial 
frontal lobe. 

There are over 50 patients who had deterministic 
tracking of the CST before undergoing surgery at the 
Neurosurgery Department of the Medical University 
of Gdańsk (Poland). Those surgeries confirmed the po-
sition of CST with the clinical findings. Other studies 
confirm our observations [19]. 

Clinical application of tractography

 The precise visualisation of the neural pathways 
and their topographic relation to the tumour increases 
the safety of the surgery, even though DTI fibres are 
not the same as the actual neural pathways [19-20]. 
Optimal preoperative planning allows the operating 
team to minimise the potential damage of vital white 
matter during the surgery [21-22]. The images created 
during the preoperative planning can be superimpo-
sed in realtime onto the view shown in the operative 

microscope. This way the neurosurgeon can remove 
the tumour relying solely on the preoperative planning 
in what is known as ‘image-guided surgery’ [23].

Corticospinal tract

 The CST is the main neuronal route responsible 
for motor functions of the face, limbs and trunk. CST 
is composed of descending fibres starting in the pre-

-centre bend (4th Brodmann area) which transmits 
neural impulses through the pyramid up to the spinal 
cord [24]. Infiltration or destruction of CST caused by 
a brain tumour, ischemic stroke or subarachnoid ha-
emorrhage affects the density of the fibres. Sterr et al 
demonstrated that the degree of the damage to the 
pyramidal pathway is closely related to subsequent 
motor deficits in patients after ischemic stroke [25]. 
The anatomy of the CST and its topography in relation 
to the tumour is essential when those two are close 
to each other [26]. Based on tractographic parameters, 
we can estimate the degree of CST injury and predict 
the postoperative neurological outcome [26]. The CST 
is the neural bundle most commonly tracked by neu-
rosurgeons, including at our centre [27]. Various ROIs 
can be used to track CST, resulting in high variability 
rate. Weiss et al showed that an ROI set at the anterior 
inferior pontine region yielded better tracking results 
compared to the ROI set at the internal capsule [28-30]. 
Furthermore, CST was reconstructed from neural bun-
dles passing through by cerebral peduncle, posterior 
limb of internal capsule and corona radiata in a patient 
after stroke [31]. This study confirmed the significance 
of a hind limb of the internal capsule as an ROI for CST 



Figure 2. Planning of the surgical approach with the visualisation of the corticospinal tract of a patient with ventricular neurocytoma

tractography. Based on the above suggestions, our 
department has commenced the DTI analysis com-
paring the differences between CSTs with various 

Figure 3. Corticospinal tract on preoperative tractography on coronal (A) and sagittal (B) planes

ROIs. In our experience, we defined two main types of 
the anatomical ROIs (the cerebral peduncle and poste-
rior limb of the internal capsule) and four additional 

e n d p o i nt s : 
p r e c e n t ra l 
gyrus, post-
central gyrus, 
supplemen-
tary motor 
a r e a  a n d 
frontal lobe.
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Arcuate Fasciculus (AF)

 AF is the white matter pathway connecting the 
Broca speech centre (located in the frontal lobe) with 
the Wernicke speech centre (temporal lobe). CNS le-
sions infiltrating AF affect speech because the com-
munication between the Broca and Wernicke areas 
becomes severed. The patient usually presents with 
so-called conduction aphasia [32-33]. DTI-based visu-
alisation of AF is an widely accepted management for 
tumours of eloquent areas. The synchronisation of the 
tractography with the navigation system determines 
the precise location of the AF. Therefore, DTI sets bo-
undaries for resection of a tumour located near AF and 
helps to prevent iatrogenic injury of the speech centre 
[34]. However, AF alone tractography could not always 
prevent postoperative aphasia. Cortical mapping, to-
gether with neurophysiological monitoring, could be 
applied for some more demanding tumours, although 
some surgeons prefer awake craniotomy [35]. Awake 
craniotomy also improves patient safety in terms of 
preserving speech functions [36]. The different loca-
tion of both Broca and Wernicke area among indivi-
duals preclude the correct prediction of functionally 
active AF in DTI, what seems to be the main drawback 
of DTI tracking of AF, also confirmed by our experience.

Nevertheless, functional MRI also can unambi-
guously estimate the exact location of speech areas. 
Researchers should put more effort into studying DTI 
in terms of speech preservation as awake craniotomy 
resection is still more reliable in this case [37].

Figure 4. Arcuate Fasciculus connecting Broca’s and Wernicke’s areas

Frontal aslant tract

The frontal aslant tract (FAT), first described in DTI 
by Catani et al, contains neural fibres connecting the lo-
wer frontal bend (pars triangularis and pars opercularis 
of the operculum) with the supplementary motor area 
(SMA) and pre-SMA [38]. Tumors infiltrating SMA or 
pre-SMA may impede some motor functions, learning 
and aphasia. In a majority of patients, the FAT projected 
to the opercularis part of inferior frontal gyrus (IFG) and 
a greater number of fibres terminated at the triangula-
ris part of IFG in left-handed patients [39]. The course 
of FAT through the inferior frontal lobe and the Broca’s 
area suggests its significant role in the proper functio-
ning of speech. Patients with progressive aphasia with a 
significant change within the FAT show particularly lar-
ge changes in the correlation with AF [38-40]. In studies 
of the surgical treatment of patients with brain tumours, 
FAT lesions are associated with transient speech disor-
ders and the occurrence of mutism and motor aphasia 
[34, 41]. The accurate prediction of the FAT location is 
possible thanks to the neuromonitoring techniques and 
direct stimulation of the cerebral cortex. In one study, 
the intraoperative stimulation of the left hemisphere 
FAT during craniotomy caused transient speech disor-
der of the stuttering type [34, 42]. 

In clinical practice, FAT could be determined to be 
a means of DTI in patients for whom an awake cranio-
tomy is planned [43]. Baker et al. suggested that FAT 
and "crossed FAT" are of great importance for tumours 
infiltrating SMA and pre-SMA [37, 44].

Limitations and future

DTI is an imaging method 
used as a radiological tool for 
years. However, only the recent 
development of visualisation 
of neural tracts, tractography, 
makes it possible to use on per-
sonal computers. Frequent use 
of tractography leads to the 
constant improvement of re-
construction methods and the-
se directly influenced the preci-
sion of treatment in the clinical 
setting. The correlation of DTI 
with a patient’s neurological 
condition is sufficient for an 
adequate therapeutic process 

of tractograph



Figure 5. Frontal aslant tract based on two regions of interest--gyrus frontalis superior (GFs) and gy-

rus frontalis inferior (GFi). Abbreviations: GFs –gyrus frontalis superior, GFi – gyrus frontalis inferior 

[45-47]. However, tractography is not considered as 
a standard approach due to its limitations, variability 
of obtained data and lack of standardisation of image 
acquisition parameters.                                              
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As mentioned earlier, tractography is a method of 
spatial imaging of computational radiological data and 
because of that use of DTI in surgical planning remains 
virtual. For patients with malignant tumours or signifi-
cant brain edema, the identification of neural pathways 
is inaccurate [47]. Furthermore, in the case of sizable 
cerebrospinal fluid flow, there is a risk of motion arte-
facts occurring during the DTI acquisition. This functio-
nal limitation substantially affects the precision of trac-
tography. For these reasons, DTI techniques should be 
regarded as complementary in surgical planning or as 
an educational tool [48].

On the other hand, DTI is still dynamically evolving. 
Thanks to its widespread use by neurosurgeons, we 
need continuous research to discover new clinical 
uses and possibilities of DTI. The main contemporary 
issue is to find the functional significance of each visu-
alised neural tract. On the contrary, even if a particular  

amount of fibres is da-
maged during the surge-
ry, it does not necessarily 
lead to noticeable neu-
rological deficits [21]. It 
seems that the future of 
neural tract tracking lies 
in the development of a 
universal mathematical 
model for precise deline-
ation of anatomic-func-
tional structures [23].

Tractography,  as 
a method of imaging, 
has been used for se-
veral years. We’ve been 
using it at out depart-
ment since 2010. In most 
cases, acquisition para-
meters are the same but 

ways of determining the nerve path of our patients are 
based on the experience of the researcher currently re-
sponsible for the patient. Nevertheless, conclusions of all 
the researchers are in line with each other. Also other 
review articles coincide with our observations about the 
utility and reliability of the tractography as a standard 
diagnostic procedure. Furthermore, our results are in 
line with the experiences published by other teams abo-
ut the necessity of using the tractography as an essential 
tool in treatment in patients with a brain tumour.

 

Conclusions
 
DTI is a clinically significant tool in the daily neu-

rosurgical practice. In the current review, we provide 
examples where tractography is a valuable imaging ad-
junct. Owing to the limitations of DTI, combining trac-
tography with intraoperative monitoring would allow 
more accurate preoperative planning and then incre-
ase the safety of the surgery. Further standardisation 
of DTI protocols is needed.
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